デブリ軌道変更衛星

防衛大学校 航空宇宙工学科 安平 浩義, 渡邊 貴敏, グエン バ タイン ロン

<u>1. 開発背景</u>

1.1 スペースデブリの現状

今、低軌道及び静止軌道で地上から観測でき ているスペースデブリは約16000個であり、そ のうち運用されている衛星は約900個と言われ ている^[1]。さらに数十億個のミリ未満の単位の かけらが低軌道では秒速7~8km/sで、36,000km の静止軌道では秒速約3km/sで、飛び交ってい る。

スペースデブリは、機能停止したペイロード、 オペレーショナル・デブリ、分裂(破砕)デブ リ、微細物質の4 種類に分類することができる。 スペースデブリは地上からの宇宙観測の妨げ にもなり、将来的にスペースデブリが自己発生 し、コントロール不能になるというケスラーシ ンドロームと呼ばれる現象についても、その可 能性が懸念されている。すなわち、デブリの空 間密度が高くなるとデブリ同士の衝突が活発 になり、デブリが際限なく増加する。その結果、 地球全体がデブリに覆い尽くされ人類が宇宙 を利用できなくなってしまう状況になりかね ない。そのため、現在の宇宙開発においてはス ペースデブリの発生を抑える工夫が進められ ていが、現存するスペースデブリを除去するこ とも大きな課題である。

なお、スペースデブリと見なされる運用停止 した日本の人工衛星のうち、観測され軌道上に ある衛星としては、たんせい、しんせい、たん せい3、きょっこう、じきけん、さきがけ、す いせい、はるか、のぞみ、あかり、みどり2、 などがある。^[3]

図1 低軌道のデブリ静止画^[2]

<u>2.開発計画</u>

2.1 ミッション目的

本衛星の目的は、導電性テザー (Electrodynamic Tether: EDT)を用いて、故障 した衛星を地上約200 kmまで軌道を変更する ことによって、スペースデブリをより少ない日 数で大気圏に突入させ、スペースデブリを排除 することにある。本衛星の特徴として、2種類 のテザーシステムを利用する。まずEDTテザ ー(テザー1)を伸展させ、その後テザー(テ ザー2)付の金属弾を対象衛星に打ち込む。打 ち込み後はEDTシステムを利用し対象衛星の 軌道を変更する。

2.2 ミッション概要

本ミッションでは小型相乗りクラスの衛星 を利用して、高度約800km上にある故障または ミッションを終えた衛星を大気圏へ突入させ る。本ミッションの概要を図2に示す。本ミッ ションでは次の4段階を通してスペースデブ リの除去を行う。

(1) 相乗り衛星として目的の軌道に入り、目的衛星に近づく。

(2) 次に,フォーメーションフライトを行っ て、目的衛星の外観を把握する。

(3) EDT テザーを伸展させた後、特殊に加工 を行った金属弾を対象衛星に打ち込む。

(4) EDT の効果によって大気圏まで軌道を変 更していく。

図2 ミッション概要図

2.3 期待される社会的効果

現在、運用されていない人工衛星では、能動 的に軌道を修正する機能を持っていない、又は システムエラーなどによりコントロールでき ず、軌道上をさまよっているものが多い。現在 までこのようなスペースデブリは年々増えて きている。この対策として、能動的に運用停止 した衛星の軌道を変え、大気圏に突入させるこ とによって運用の終わった衛星を処理する必 要がある。本ミッションは我々が検討を進めて いる独自のドッキング方法と、これまで研究が 進んでいる導電性テザー (Electrodynamic Tether: EDT)^[5-8]を用いることで、故障または ミッションを終えた衛星の処理を従来より容 易かつ安全に行うことができる。

2.4 導電性テザー (Electrodynamic Tether : EDT)

EDT とはテザーに流す電流と地球磁場とに よって衛星の速度方向とは逆の方向に力(ロー レンツ力)を発生させる装置である。推力は小 さいが、推進のための燃料が不要であるため従 来の推進系より比較的容易に使用できる。ED Tシステムの概念図を図3に示す。

図 3 EDT システムの概念図^[4]

2.5 本衛星の特徴

これまで、EDT やテザーを利用した衛星の 計画は多くあるが^[5-8]、本衛星は以下の点にお いて他の衛星と異なる。

- (1)対象衛星の捕獲にアームなどを使うことがないため、厳密な対象衛星の運動 推定が不要で、姿勢制御も容易である。
- (2) 対象衛星との接触を金属弾だけにする ことによって、絶縁処理が容易となり、 帯電によるシステムダウンの可能性が 低い。
- (3) 小型相乗り衛星クラスの衛星によるデ ブリ除去が可能であるため、低コスト である。
- (4) EDT テザーを進展させた後に金属弾を 打ち込むので、打ち込み時に発生しう る衛星の回転運動を重力傾斜トルクで 安定化できる。

2.6 衛星の諸元

衛星の外観を図4に示す。

本ミッションで使用する衛星の諸元を以下 の表1に示す。なお、本衛星は H-IIA ロケッ トに相乗りする小型副衛星での実現を目指す。

寸法、質量	50cm×50cm×50cm 約 50kg	
	(テザー m=20 kg)	
ミッション	CMOS カメラ(外部観測)	
機器	打ち込み機構(ドッキング)	
通信系	φ10cm パラボラアンテナ	
	ダイポールアンテナ	
電源系	太陽光電池	
金属弹射出	バネによる射出	

表1 衛星諸元

2.7 対象とする衛星

本システムで軌道から除去できる衛星とし ては、小型相乗り衛星から3~4ton級の大型衛 星まで幅広く対応できると考える。本ミッショ ンでは一例として日本が打ち上げた衛星で運 用が停止されている、みどり2(ADEOSII) を対象とした。対象衛星の軌道要素を以下に示 す。

表 2 ADEOS II の軌道要素^[9]

名称	MIDORI II (ADEOS-II)		
軌道傾斜角	98.355		
昇交点赤経	18.491		
離心率	0.0001121		
周期	1h 40m 57s (100.95 分)		
近地点高度 ×	902 × 905 lm		
遠地点高度	805 × 805 km		

2.8 フォーメーションフライト

本ミッションでは運用の初期段階において、 対象衛星の状況、姿勢などを観察する。小型の 本衛星より、スラスタを使用せずに目的衛星の 外観を観察するために、フォーメーションフラ イト軌道を用いる。今回想定するフォーメーシ ョンフライと軌道を用いた場合の、ADEOS II から見た本衛星の軌道を図5に示す。本衛星は ADEOS II の地心軸方向に90度下約500mの位 置を通り、ADEOS II から見て上下に移動しな がら軌道上を飛行している。この図における衛 星間距離は、ターゲット衛星と本衛星の重心間 の距離である。本衛星ではテザー伸展後の主衛 星は重心より約 460m 上方にあるため、最接近 時(約 500m)には主衛星はターゲット衛星よ り約 40mの距離に位置する。

図5 ADEOS II から見た本衛星の軌道

2.9 打ち込み

2.9.1 打ち込み試験概要

本衛星ではテザーの付いた金属弾を対象 衛星に打ち込むことで、対象衛星にEDTシ ステムを結合する。そこで、まず金属弾の衛 星構造への打ち込み、及び引き抜き強度実験 を行った。なお、本衛星ではバネを用いた金 属弾の射出を想定しているが、本試験では既 存の試験装置を利用するため空気銃式の打 ち込み試験装置を利用している。

まず、衛星構造に広く用いられているハニ カムサンドイッチ構造への金属弾撃ち込み 試験を行い、本手法の実現可能性を検証した。 本試験では、空気銃式衝撃試験装置を用いて 金属弾をハニカムサンドイッチ板試験片に 打ち込む。試験装置の概要と外観を図6に示 す。試験に用いた試験片は、表皮厚さ1mm、 全厚さ15mmで25cm角のアルミニウム製ハ ニカムサンドイッチ板である。撃ち込み速度 は射出管先端に10cmの距離を離して設置し た2対の光スイッチとカウンターより算出 することができる。

(a) 概要図

(b) 外観

(c) 固定冶具 Tilt angle: 45 [degree]

図6 試験装置の概要と外観

2.9.2 本ミッションに使用する金属弾

本ミッションではテザーの付いた金属弾 を、構体パネルを貫通することなく適切に 固定する必要がある。そのため用いる金属 弾は、貫通を避けるため後端が太く、さら に、貫入後の引き抜き強度を上げるため、 先端の軸部の一部が細い形状となっている。 金属弾先端の角度は45度(弾A),60度(弾 B)とした2種類を用いる。また、打ち込み 試験の一部では、後に行う引き抜き強度試 験のため金属弾に加工を施し、金属弾の後 端側にネジ穴を追加している(弾A',弾B')。 鉄製で重量約 210gの金属弾を作成し、実 験に使用した。金属弾概念図を図7に示す。

2.9.3 打ち込み試験結果

打ち込み試験における試験条件を表3に 示す。試験では相対姿勢が不明な大型デブ リへの撃ち込みを想定し、対象となるハニ カムサンドイッチ試験片の設置角度を0,30, 45 度と変えた試験と、設定角度は0度でハ ニカムサンドイッチにアルミ板または金属 製のボックス(衛星内部のコンポネットボ ックスに相当)を取り付けた試験片を用い た試験を実施した。その際に金属弾で破壊 されて出てくる金属破片を計測するために、 ハニカムサンドイッチ試験片の周囲にビニ ール袋を取り付けている。射出速度に関し ては、本試験の前に予備試験を実施し、試 験片を貫通することなく金属弾先端部の貫 入が可能なガス圧力を求め、そのガス圧力 を用いて本試験を実施した。設定圧力の際 の金属弾の射出速度は約20m/秒である。な お、予備試験より射出速度が 30m/秒に近い 場合には金属弾が試験片を貫通することが 分かっている。本試験の結果、試験片の設 置角度によらず、後端の直径拡大部が試験 片に留まるかたちで金属弾の先端部が貫入

する適切な貫入状態が得られた。また、ア ルミ板や金属製ボックスを設置している試 験を行ったところ、発射速度が約30m/秒の 場合でも金属弾は貫通することはなかった。 打ち込み時の高速度カメラ画像を図8に、 試験後の打ち込み状況の例を図9に、打ち 込み後発生した金属破片を図10に示す。

この試験結果から、適切な撃ち込み条件 により、金属弾がハニカムサンドイッチ板 を貫通することなく、適切な状態での固定 が可能であることを確認した。また、打ち 込みによって発生する金属破片は少量 (0.25g 程度)かつ全て衛星内に相当する側

(0.23g 程度) かり主 て 単 単 内に 相当 り る 側 に 集まっており、 衛星外に出る可能性は低 いと考えられる。

Test	金属弾	打ち込み	試験片の取り
Case	タイプ	速度 [m/s]	付け角 [deg.]
1	А	22.48	0
2	В	21.92	0
3	А	18.58	30
4	В	24.47	30
5	А	19.95	45
6	В	24.08	45
7	Α'	27.2	0
8	В'	計測できず	0
9	В'	32.1	0
10	Β'	27.8	0

表3 金属弾打ち込み試験-試験条件

図 8 打ち込み時概要 (Tese case - 1)

図9 打ち込み状況の例

図10 打ち込み実験時に発生した金属片

2.9.4 引き抜き強度試験

打ち込みによる金属弾の衛星構体への固定の強度を調べるため、貫入した金属弾の引き抜き試験を行った。試験構成を図11に示す。本試験では、打ち込み試験ケース7,8の結果得られた試験片を用いて、その引き抜き強度を調べた。試験結果を図12に示す。本試験では試験ケース8の場合に最大で200[N]程度の引き抜き強度が得られており、ケース7の試験片では1000[N]の荷重負荷においても引き抜きができなかった。

EDT などのテザーを用いたデブリの除去 の場合、テザーの展開時に十数[N]の張力が テザーに負荷されることが報告されており ^[10]、本研究で検討した金属弾の撃ち込みに よる固定法は、テザーを用いたデブリ除去 におけるテザー固定方法として十分な引き 抜き強度を有していることが確認できた。

図11 金属弾の引き抜き強度試験概要

図 12 引き抜き強度試験結果

2.10 テザー伸展方法

まず EDT テザー (テザー1)の伸展を行 う。テザー1の伸展方法としては、研究が なされている既存の方法^[10]で行う。その後 金属弾に取り付けてあるテザー (テザー2) を伸展させる。テザー2の伸展において、 対象衛星に到達した際に約 25m/s の速度が 必要であることが、前節の実験よりわかっ ている。そこで必要な初速を計算する。ま ず、リール摩擦力 F はリールの積極的な送 りだしがない場合、参考文献^[10]より

 $F(t) = 0.038V(t) + 0.005 \tag{1}$

と求められている。

また、運動方程式は

d²x/dt²=F(t)/m(2)である。金属弾を 0.21 kg、本衛星から対象

衛星までの距離を40mとして、必要な初速 を求めると32.3m/sであり、その初速を得る ために必要なばね定数は490.3N/mmである。 また、本衛星から金属弾は約2秒後に対象 衛星に到達する。

2.11 デブリの除去能力

本衛星は小型相乗り衛星であるので重量 や寸法に制限がある。そこで、線密度 8.48 g/m で、アルミニウム製のテザーを 2km 使 用することにした。テザーの重量は約 20kg、 体積は 0.18m³であり、小型相乗り衛星に搭 載可能である。ここでこの程度の長さのテ ザーによる衛星除去能力を検証すると、過 去の研究より、地上約 800km にある衛星で ある ADEOS なら、2km のテザーで 300w の 電力を流すと、約1年半で大気圏(高度 200km)に突入することが予想される(図 13)ので^[11]、本衛星でも故障した衛星の処 理能力は十分あると判断できる。

3 結言

現在、宇宙空間では故障した衛星などの スペースデブリが非常に問題となっている。 そこで我々は、故障した衛星の除去の対策 として、EDTと新たなテザーの固定・伸展 方法を利用した小型相乗り衛星を提案した。 現在、多くの国がスペースデブリ対策を考 え、実行しようとしている。その目的は宇 宙環境を良くして、宇宙開発をもっと盛ん にすることにある。また我々は、スペース デブリの除去は今後、新しいビジネスにも 成り得ると考えている。世界に先駆け、本 衛星によりスペースデブリ除去システムを 確立することは、日本の宇宙産業の活発化 に寄与し、落ち込んでいる日本経済を持ち 直すことも可能であると考える。

4参考文献

[1]http://www.isas.jaxa.jp/home/rikou/kogata_eisei/symposium/1st/koto/019_kimura.pdf[2]http://orbitaldebris.jsc.nasa.gov/photogallery

/beehives.html#leo

[3]http://www.isas.jaxa.jp/j/enterp/missions/cat alogue.shtml

[4]http://www.ard.jaxa.jp/research/mitou/mit-e dt.html

[5]スペースデブリ除去技術の研究 研究開 発本部 未踏技術研究センター

[6] S. Nishida, S. Kawamoto, Y. Okawa, F. Terui, S. Kitamura, "Space debris removal system using a small satellite", Acta Astronautica, 65 (2009), pp.95-102.

[7] M.M. Castronuovo, "Active space debris removal - A preliminary mission analysis and design", Acta Astronaut, 69 (2011), pp. 848-859.

[8] S. Kawamoto, T. Makida, F. Sasaki, Y. Okawa, S. Nishida, "Precise numerical simulations of electrodynamic tethers for an active debris removal system", Acta Astronautica 59 (2006), pp.139-148.

[9]http://celestrak.com/

[10] 壹岐賢太郎,河本聡美,森野美樹," 離散質点モデルを用いた導電性テザー伸展 シミュレーションによる伸展ダイナミクス の検討",第 20 回スペース・エンジニアリ ング・コンファレンス,D3 (2012)

[11] Y. Ishige, S. Kawamoto, S. Kibe, "Study on electrodynamic tether system for space debris removal", Acta Astronaut, 55 (2004), pp. 917-929.