第16回衛星設計コンテスト 設計の部

太陽極大期における放射線観測衛星

"ソラマメ"

*SOLA*r *MA*xi*M*um radiation obs*E*rving satellite

大阪府立大学 工学部 航空宇宙工学科

小型宇宙機システム研究センター

藤本卓也 江藤 力

小泉拓郎 福西瑛司 礒野隆章 小野達也 荘司大輔 田中康平 柳田将志

— Mission Design—

1. ミッション部

1.1. 背景と意義

宇宙機が故障する大きな原因の一つは宇宙放 射線(電子, プロトン, 重イオン等)による障害で あり,今後の宇宙開発のために解決しなくてはな らない深刻な問題である.この問題を解決するた めには,宇宙放射線帯をよく理解し,変動のメカ ニズムを解明して,正確な放射線量の予測を行う こと必要である.本衛星では極軌道で放射線電子 が瞬間的に大きく変動する,マイクロバースト現 象を観測することで,宇宙放射線変動メカニズム の解明や宇宙天気予報の質を向上させることに 役立つデータの取得を行う.そのため,本衛星で は低軌道での放射線電子の観測を行う.さらに, 同時期に静止トランスファー軌道に投入される 衛星とデータを相互利用することで,立体的な放 射線帯を理解することを目指す.

図 1-1 に示すように,宇宙放射線によるシング ルイベント SEU(半導体メモリの誤作動)は,中央 制御ユニット等の電子搭載機器へ悪影響をもた らし,多くの故障の原因になっている.さらに, 放射線の蓄積によって半導体デバイスの性能が 劣化するトータルドーズ現象なども,放射線によ る弊害である.

図 1-1 人工衛星の故障の原因

これらの放射線障害を回避し,将来積極的に宇 宙を利用するためには,宇宙放射環境の時間的, 空間的変動に関する計測や,そのデータを使った 予測が必要になってくる.しかし,宇宙での放射 線環境は宇宙空間の場所や時間によって大きく 変動するため,その予測は簡単ではなく,放射線 の変動のメカニズムを解明することが大きな課 題の1つになっている.そのために宇宙放射線の 変動を観測し,そのデータを解析することは非常 に重要である.今回観測を行うマイクロバースト 現象も宇宙放射線の変動現象の一つである.この 現象は放射線外帯において,時間スケールの極め て短い変動を伴う電子の爆発的な増加現象が,散 発的かつ局所的に起こるものである. マイクロバ ースト現象は磁気嵐が起こった直後に起こると 言われており、SAMPEX 衛星の HILT という観 測装置によって観測された.この衛星は,高度510 ~690 kmの低軌道で地球を周回していた衛星で、 本来の目的は高エネルギの宇宙線(重イオン)観測 であり、マイクロバースト現象は偶然観測された ものであり、現在までに発生のメカニズムなどの 詳しいことはわかっていない. マイクロバースト 現象が起こる放射線外帯は地球の周辺に存在す る放射線が集中している領域の1つで,赤道上空 20000 km あたりになる. 図 1-2 に示すように 放射線帯には内帯と外帯が存在し、内帯は高エネ ルギのプロトンと電子が多く,放射線の変動は小 さい. それに対して, 外帯は電子が大多数でその 変動も大きい.

上:0.5 MeV 以上のエネルギを持つ電子数[cm⁻²・s⁻¹] 下:磁気赤道で地球半径を1とした地心からの距離 図 1-2 電子の放射線帯^[3]

SAMPEX 衛星が 1998 年 10 月に取得したデー タを示した図 1-3 を見ると, 放射線帯外帯の電子 の量が多いことを確認できる. さらに, 赤色の高 時間分解能のデータを見ると, ひげのようなマイ クロバースト現象を確認することができ, 局所的 に放射線電子の量が大きく増大していることも わかる.

磁気赤道で地球半径を1とした地心からの距離

図 1-3 マイクロバースト現象[4]

マイクロバースト現象は磁気嵐が起こった直後 に発生すると考えられている.太陽極大期とは、 太陽黒点相対数が最大になり,太陽活動が活発に なる時期で、放射線帯が時間的・空間的にきわめ て大きく変動することが日本のあけぼの衛星や 米国の CRRES 衛星などの観測により知られてい る.太陽極大期は約11年周期でやってくるので、 次の極大期は 2011 年と考えられている. この時 期には CME(コロナガス噴出)が頻繁に発生し, そ の影響によって磁気嵐が活発になる、これらの現 象により地球の磁場圏が乱されて, 放射線の電子 が増大することがわかっている. しかし, CME が地球の磁気圏をどのように乱すのか、そしてど のようなメカニズムで放射線の電子が増えるか は十分に解明されていない. そこで, 2011年にア メリカの RBSP 衛星, カナダの ORBITALS 衛星, 日本の ERG 衛星などが原因究明のために磁赤道 付近を周回する静止トランスファー軌道に打ち 上げられる予定である.

地球周辺には図 1-4 のような磁力線があり, 放 射線粒子はこの周りを旋回しながら, 磁力線に沿 って南北を往復している.マイクロバースト現象 は磁力線に沿って降下してくる放射線電子が短 時間で増加する現象であると考えられている.

図 1-4 地球磁力場の概念図

そのため、観測には磁力線が集中する磁気極付近 を通る低軌道(極軌道)が最適である.また、図 1-5 に示すように本衛星の軌道と高度は、静止トラン スファー軌道に投入される衛星と磁力線を介し てつながっており、それらの衛星とデータを相互 利用することで、立体的な放射線帯を理解するこ とが可能になる.

図 1-5 放射線帯と衛星の軌道

1.2. 目的

本衛星の目的は主に以下の4 つである.

- ① マイクロバースト現象のデータの取得
- ② 地球低軌道での放射線電子の測定
- ③ 衛星用機器の宇宙での放射線耐久試験
- ④ プロトンやα粒子の観測

1.3. ミッション概要

1.3.1. マイクロバースト現象の観測

地球低軌道の磁気極近くで放射線電子を観測 することでマイクロバースト現象の観測を行う. マイクロバースト現象は磁気嵐時に放射線帯外 帯で発生することがわかっていて、1 MeV 程度の エネルギを持った放射線外帯電子が短時間で爆 発的に増加する現象である. そのため, 放射線帯 外帯で 1/1000 s 単位の超高時間分解能で 1 MeV 程度のエネルギを持った放射線外帯電子の増減 を観測する.また、マイクロバースト現象は地球 磁力線に沿って電子が降下してくると言われて いる.そこで、衛星の上部と側面にまったく同じ 検出器をつけることによりどこから放射線電子 が移動してきているかを確認する. さらに、地球 周回軌道全域のデータの時間に対する分散を計 算することで、高時間分解能で観測可能な領域以 外でマイクロバースト現象が起こっているかど うかを判断することができる.

1.3.2. 低軌道での放射線電子の測定

1s 単位の低時間分解能で本衛星の地球周回低 軌道全体での放射線電子の測定を行う.これによ り,数十分間隔で同じ磁力線上での放射線電子の 変動も観測できる.

1.3.3. 放射線耐久試験

本衛星の空きスペースに開発中の宇宙用機器 や宇宙用ではない民生品を搭載することで放射 線耐久実験を行う.それらの機器からのデータを 取得することで,その機器が宇宙空間で問題なく 機能するかの確認を行う.

1.3.4. プロトンやα粒子の観測

本衛星のミッションは放射線電子の高時間分 解能での観測がメインであるが、今回使用する放 射線検出器は、プロトンや a 粒子を観測すること も可能である.また、時間分解能を1s以上にす れば、取得データ量も電子の測定データの数%程 度に抑えることができ、本衛星の設計をほとんど 変更することなく測定をすることが可能である。 そのため、条件がそろえば、観測を行うことにす る.この観測データは放射線耐久試験に活用でき る.

1.4. 取得したデータの利用法

この衛星で取得したマイクロバースト現象の 観測データを解析することで、マイクロバースト 現象の発生のメカニズム、詳しい発生場所および 発生時間,発生頻度を解き明かす.さらに、これ らの結果を宇宙天気予報に生かすことが期待で きる.宇宙天気予報をさらによいものにするには 放射線外帯電子の増加を引き起こす加速メカニ ズムと、減少を引き起こす消失メカニズムの解明 が必要だと言われている.これについてはマイク ロバースト現象の観測によるデータの解析に加 えて、軌道全体で取得したデータの利用でも理解 が進むと考えられる.これらの結果を放射線変動 モデルに組み込むことで、宇宙天気における放射 線変動予測を経験的な予測から物理的課程を含 むより精度の高い予測に高めることができる.

また、本衛星と静止トランスファー軌道の衛星 が同じような磁力線上にあれば、互いのデータを 比較することで、低軌道での放射線の変動が、高 軌道での放射線の変化にどのような影響を及ぼ すか、高軌道での放射線の変化が地球近くの低軌 道まで影響を及ぼしているかどうかを確認する ことができる.このように、異なる高度で観測す ることで、変動のメカニズムをより深く解明でき る.

同じ磁力線にいなくても,図 1-5 で示すように, 低軌道を周回する本衛星が,放射線が密集した磁 気極周辺で観測を行うことにより,短時間で様々 な放射線帯のデータを取ることができ,グローバ ルな放射線環境を理解することが可能である.

また,本衛星と静止トランスファー軌道の衛星 は磁力線を介してつながっているため,二つの衛 星のデータを組み合わせることで,立体的な放射 線環境を知ることもできる.

さらに、高軌道の衛星が長い時間をかけて全体 的な放射線の構造を測定するのに対して、低軌道 の本衛星では短い時間で局所的な放射線の構造 を測定することができる.このような面でも、静 止トランスファー軌道の衛星が取得できないよ うなデータを補完することができる.このように 静止トランスファー軌道の衛星ではカバーしき れない範囲をピギーバックの小型衛星がカバー することにより、全体として大きな成果をあげる ことができる.

宇宙での放射線環境は場所や時間による変動が はげしく、新しい機器が実際に宇宙で正常に作動 するかどうかを判断することは困難である.しか し、ピギーバック衛星の空きスペースでその試験 を行えば、低予算で宇宙での耐久性を確認でき、 宇宙機器の開発を促進させることができる.

1.5. 本衛星の独自性

本衛星は小型衛星で H-IIA のピギーバックを 利用するため,費用を安く抑えることできる.ま た,本衛星のようにマイクロバースト現象にター ゲットを絞った観測は行われたことはない.さら に,今回の解析書では分かりやすくするために 1s 単位の時間分解能を低時間分解能と呼称してい るが,今までの放射線観測の分解能と比べると 1s 単位の時間分解能で観測することも充分に高時 間分解能であり,あまり行われていない.よって, この観測は新しい発見につながる可能性を秘め ている.これらのことから,この衛星で観測を行 うことだけでも,大きなチャレンジだと言える.

マイクロバースト現象の観測による放射線変 動メカニズムの解明だけでなく,静止トランスフ アー軌道の衛星とのデータ比較と補完による立 体的な放射線の理解というミッションもあるた め,今回のミッションで得られる効果は非常に大 きい.

1.6. ミッション要求

1.6.1. 時間分解能

マイクロバーストの観測を行うため、磁気極付 近では 1/1000 s 単位の高時間分解能で測定を行 う.しかし、高分解能での観測時間を長くすると 観測データが膨大になり、通信機器の能力を上回 ってしまう恐れがある.そのため、どちらか片方 の放射線外帯領域付近でのみマイクロバースト を観測するとして、1/10 周回を 1/1000 s 単位の 高分解能とする.その他の軌道周回については、 1 s 単位でデータを取得し、その時間分散を計算 する.

1.6.2. 機器の設置場所

今回は放射線検出器を図 1-6 のように上面と 側面の2箇所に設置する.マイクロバースト現象 の検出のためには検出器が天頂方向(地球と逆の 方向)を向いている必要がある.そのため,上面に 検出器の放射線入射口が来るように設置する.ま た,側面の検出器は磁力線に沿って降下してくる もの以外を観測する.

図 1-6 検出器の設置個所

1.7. ミッション設計

1.7.1. 運用計画

今回の放射線観測機を用いたミッションの運 用は高時間分解能モード,低時間分解能モードの 二つに分かれる.本ミッションでは定常時に低時 間分解能のデータを取得し続け,1周回につき磁 気極付近の1/10周回だけは高時間分解能で観測 を行う.観測モードの切り替えは機上で軌道計算 を行うことにより判断する.しかし,磁気極以外 の場所でマイクロバーストらしいデータが観測 されたときや、それ以外の興味深いデータがとれ たときにはデータ処理部の判断により、時間分解 能モードを変更する.また、同時に放射線耐久試 験も行う.

1.7.2. 軌道と高度

本衛星は低軌道でマイクロバースト現象の観測 を行う.よって,放射線帯外帯が低軌道まで下り てきていて,磁力線が集中している磁気極付近を 必ず通過しなくてはならない.この条件を満たす には,軌道傾斜角が 90 deg 付近の極軌道をとる 必要がある.

また,今まで打ち上げられてきた H-IIA のピギ ーバック衛星は軌道高度が 700 km であるものが 多いということや,マイクロバースト現象を観測 した SAMPEX 衛星の高度もこれに近いというこ とから,高度は 700km とする.

1.7.3. 放射線検出器

本衛星では半導体検出器を使用した放射線測 定器を使用する.半導体検出器は放射線が物質中 を通過するとき,原子から電子を分離する作用(電 離作用)を利用する機器である.半導体には空乏層 と言われる部分がある.その部分に逆方向の電圧 をかけても電荷のキャリアがほとんどないため 電流は流れない.しかし,そこに放射線が入射す ると電離作用によって電子・正孔対が生成され, それがキャリアとなり,エネルギ損失に比例した 電流が流れる.それをパルスとして測定するのが 半導体検出器である.放射線検出器にはシンチレ ーションカウンター,比例計数管,ドリフトチェ ンバー,アバランシュダイオードなど色々な検出 器が存在するが,その中で半導体検出器を選択し た理由を以下に示す.

- ・構造がシンプルなため、装置を小型化でき、信 頼性も高い
- ・実際に宇宙で使われた実績がある
- ・エネルギ分解能が高い

検出器の概形

本衛星で使用する半導体検出器では Si 表面障 壁型検出器(SSD)を 3 枚使用する.表面障壁型の 検出器は放射線を感知しない死層が少ないとい う長所がある反面,光に対して弱いという性質が ある.そこで検出器の一番外側に光を吸収する目 的でアルミニウム板(厚さ 0.1 mm)を設置する.

また,検出エネルギ範囲を調整するために SSD(厚さ 0.3 mm)の間に銅板(1 枚目の厚さ 0.45 mm, 2 枚目の厚さ 0.25 mm)を吸収材として設置 する. 概略図を図 1-7 に示す.

検出器の容器には加工し易く,軽量で,安く, 放射線の遮断特性等も明らかになっているアル ミニウムを使用する.

さらに、この検出器では低温になるほど、ノイ ズが減少し、観測の精度が上昇する.よって、検 出器の外側に放熱板を使用する.

図 1-7 半導体検出器

電子の入射エネルギの特定について

本検出器ではそれぞれの SSD を放射線電子が 通過したときの損失エネルギを測定し,何枚目の SSD でどれ程のエネルギを損失したかと,何枚目 まで透過してきたかを測定することにより,入射 してきた電子のエネルギを知ることができる.し かし,この方法で放射線を測定するには入射して きた電子が検出器を通過したときに,どれぐらい のエネルギを損失するかがあらかじめ分かって いないと,検出した電子のエネルギを知ることは できない.これを表す指標を阻止能と言い,単位 長さあたりのエネルギ損失で表す.電子に関して の阻止能を理論的に計算する Bethe の式を(1-1) に示し,そこで使った記号の意味と数値を表 1-1 に示す.

$$\frac{dE}{dx} = 4\pi\gamma_0 \frac{mc^2}{\beta^2} NZ \left[\ln\left(\frac{\beta\gamma mc^2 \sqrt{\gamma - 1}}{1}\right) + \frac{1}{2\gamma^2} \left\{ \frac{(\gamma - 1)^2}{8} + 1 - (2\gamma^2 + 2\gamma - 1) \ln 2 \right\} \right]$$
$$\gamma = \frac{T + mc^2}{mc^2}, \beta = 1 - \frac{1}{\gamma^2}$$
(1-1)

歉	1-1	Bethe	の式に使用	した記号	の音味	レ数値
x	. I I	Dente			マン園が	こ数胆

名称	記号	数值
入射してくる電子の運動エネルギ	т	
[MeV]	1	
古典的電子半径 [m]	γo	2.82E-13
電子の静止質量エネルギ [MeV]	mc²	5.11E-01
電子が透過する物質(シリコン)の原子	7	14
番号	L	14
粒子が通る物質中の 1m ³ 当たりの原		
子の個数	N	2.15E+22
物質の平均励起エネルギ [MeV]	Ι	3.21E-05

阻止能を計算して導き出し、入射エネルギに対 する検出器内でのエネルギ損失を図 1-8 に示す. (図 1-7に示す SSD のうち,一番上を SSD1 とし, 順に SSD2, SSD3 とする.)

図 1-8 入射電子に対する SSD でのエネルギ損失

この値を基本にして実験装置を使って地上実 験を行うか,別の方法を使って計算をして精度を 確認し,値を補正していく.

その一例として図 1-9 に JAXA の科学衛星「あ けぼの」で使われた検出器のデータを示す.あけ ぼのの場合は Bethe の式で理論値を出し,電磁カ スケードモンテカルロコード EGS4 を用いて損 失エネルギの計算の確認を行っている.

図 1-9 EGS4 による計算(太線)と Bethe の式の比較^[5]

また,この検出器にはプロトンやα粒子も入射 してくる.これらと電子を区別するために,各S SDで 300keV以下の出力信号のものを抽出する.

測定電子のエネルギ範囲

本衛星が観測目標にしているマイクロバース ト現象は図 1-3 が示すように1 MeV の電子が増 加する現象である.よって,銅板や SSD の厚さ を調節し、1 MeV 周辺のエネルギ帯の電子を中心 に観測を行うことにする. 今回は 3 枚の半導体の 板を使用することにより、3 つのエネルギ範囲に ついて測定を行う. それぞれの SSD で吸収され るエネルギは図 1-8 のようになるので、計測する 電子のエネルギ範囲は表 1-2 のようになる. SSD1 だけを透過するエネルギを持った電子をチ ャンネル e1、SSD2 まで透過する電子をチャンネ ル e2、SSD3 も透過する電子をチャンネル e3 と する.

表 1-2 検出器のエネルギ範囲

チャンネル名	エネルギ範囲 [MeV]
e1	0.25~0.81
e2	0.82~1.22
e3	1.23~

<u>エネルギ分解能</u>

検出器ではエネルギー定の放射線が電気信号 に変換される過程で,統計的ゆらぎ・回路の雑音 などの影響により,観測されるエネルギスペクト ルにある程度の広がりが生じる.この広がりを示 す指標が半値幅と呼ばれるもので,(1-2)で計算す る.半値幅を検出した電子のエネルギ損失で割っ たものが測定エネルギ分解能であり,(1-3)で計 算できる.本衛星の放射線計測に使用する半導体 検出器は,単一エネルギによって発生する電子・ 正孔対の数が他の検出器に比べて多く,統計的バ ラツキが小さくなるので,エネルギ分解能が高い. 半値幅と測定エネルギ分解能は次式で定義でき る.

$$\Delta E = 2.35 \sqrt{FE_0 \varepsilon} \tag{1-2}$$

$$E_a = \frac{\Delta E}{E_0} \times 100 \tag{1-3}$$

この検出器で1 MeV の電子を検出したとする と,測定エネルギ分解能は表 1-3 のようになる.

表 1-3 計算に使用した記号の意味と数値

名称	記号	数値 (シリコンの場合)
電子・正孔対生成の	F	2.76
平均エネルギ [eV]	Ŀ	3.70
半值幅 [eV]	ΔE	1760
Fano 因子	F	0.150
エネルギ損失 [eV]	E	
(入射エネルギ)	E_0	
測定エネルギ	F	0.176
分解能 [%]	Ľa	0.170

1.7.4. 放射線検出器処理部

放射線検出器処理部について以下に示す.

放射線検出器処理部の役割

処理部の主な機能は高時間分解能と低時間分 解能の切り替え,低時間分解能データの分散の計 算,取得したデータのパルス変換やAD変換等で ある.図 1-10 にミッション全体のシステム図を 示す.

図 1-10 ミッション系のシステムブロック図

パルス変換器について

放射線検出器からの出力信号は微弱な電荷パルスであるため、これを積分して電圧パルスに変換する.その後、パルス波形整形を行って、記録 装置に適合するパルスとする.

AD 変換器について

放射線検出器のデータはアナログデータであ るため、そのデータを記録、送信するためにはデ ジタルデータに変換する必要性が生じる。今回は 検出器1個あたりSSDが3枚あり、その検出器 が2個あるため、全体ではSSDが6枚存在する。 そのため、チャンネル数が6チャンネル以上必要 である。また、最大で1秒間に1000個のサンプ ルを取得するため、サンプリングレートが1チャ ンネルあたり毎秒2キロサンプル以上のAD変換 速度を持つ機器を使用する。

さらに、処理部には放射線データの分散の計算 も必要になる.以上の条件から計算機とAD変換 器の二つの機能を備えた H8SX を使用するとす る. H8SX は中央制御ユニットで使用するものと 同じである.その仕様は表 8-1 に示す.

1.7.5. 放射線耐久試験について

放射線耐久試験についてはどのような機器を 搭載するかの詳細が決まっていない.そのため, それを搭載する為のスペースと電力を確保して おく.また,そこで取得したデータはミッション データと一緒に送信する.

1.8. バス部への要求

バス部を設計するためのミッション機器の寸 法,質量等を表 1-4 に示す.

	検出器	処理部	耐久試験部
寸法 [mm]	$50 \times 50 \times 100$	$100 \times 100 \times 50$	100 × 100 × 100
質量 [kg]	0.56	0.86	1
高分解能	3.5	3.5	0.5
消費電力 [W] 低分解能	1	2	0.0
温度条件 [℃]	-100to60	-20to75	_
視野角 [deg]	43.6	-	-
幾何学的要素 [cm2sr]	1.18	_	_

表 1-4 ミッション機器

姿勢系

姿勢系には地球周回軌道の多くで、半導体検出 器が地球と反対方向(天頂方向)を向いていること を求める.高時間分解能のモードでは磁力線に沿 ってきた放射線電子を確実に観測するため、姿勢 精度要求を5 deg とする.

<u>構造系</u>

放射線が入射するための開口部を上面と側面 に1箇所ずつ計2箇所設けることを求める.(開 口部直径40 mm).また,その位置についても他 の搭載機器からの影響をあまりうけない場所に 設置することを求める.

<u>熱系</u>

ミッション機器の許容温度範囲を表 1-4 に示す. 半導体検出器は低温になればなるほどエネルギ 分解能がよくなる.よって出来る限り低温になる ことも求める.

通信系

1枚のSSDで1回測定を行ったときのデータ量 は4byteとする.4byteは単精度の浮動小数点数 を表し,一般的な計算や解析に広く用いられてい るものである.この半導体放射線検出器では3枚 のSSDを入射電子が通過したかどうかで判断す るため、1回測定を行うと12 byteのデータが発生する.よって、上記に示した時間分解能でミッションを行うと1周回(5926秒)及び1日あたりに 発生する最大データ量は表1-5の通りである.

表 1-5 ミッションデータ量

	高時間分解能	低時間分解能	合計
観測時間 [min]	98	10	I
1周回のデータ量[KB]	7111.2	142.2	7253.4
1日のデータ量[MB]	103.8	2.1	105.9

表 1-5 の合計に示したデータ量に加えて, 放射 線耐久試験で得られるデータを 10 MB 程度と仮 定して, 通信系には 115.9 MB を1日で地上に送 信できることを求める.

<u>データ処理</u>

1日あたり 115.9 MB のデータ量を保存できる ことを求める.

<u>電力系</u>

高時間分解能の計測を1周回の内の1/10周回行 えることと,低時間分解能の計測を常に行えるこ とを求める.最初の10min(日陰時)で観測を行う としたときの時間的な電力要求を図1-11に示す.

— Bus-System Design—

要求

バス部の設計をするにあたり前提条件を表 1-6 に示す.本衛星に対する要求は、ミッション実行 時に地球指向精度を 5 deg 以内にし、衛星の運用 を確実に行えるようにすることである.

表 1-6 前提条件

質量	50 kg 以内	
寸法	500×500×500 mm 以内	
打ち上げロケット	H-ⅡA ロケット	
打ち上げ方法	ピギーバック	

2. バスシステムの概要

2.1. 衛星を構成する系

本衛星は、ミッション、構造、姿勢制御、通信、熱制御、電力、データ処理から構成される. それぞれの関係を示したシステムブロック図を図 2-2 に示す. また、それぞれの系の構成要素を表 2-3 に記す.

2.2. 衛星の基本形状

衛星の概要について表 2-1 にまとめる.本衛星は図 2-1 に示すように,信頼性を高めるためにパネ ルをボディマウントに配置する.また,ミッションの要求を満たすため,重力傾斜トルクを増大させる マストを展開する方式を用いる.機体固定座標系の+ Z_B は MST 伸展方向, + X_B は HPM の側面検出 器の観測方向とする.

図 2-1 外観と座標定義

寸法	400 × 400 × 400 [mm]	
質量	22.9 [kg]	
設計寿命	1年	
	混合型姿勢制御	
安势前仰力式	(重力安定+地磁気制御)	
太陽電池	ボディマウント	
搭載方式		

表 2-1 衛星概要

2.1. 軌道

本衛星ではミッション要求から極付近を通過 する軌道にする必要がある.さらに,太陽と衛 星の位置関係や昼夜の時間が一定であるため電 力が確保しやすく,電力収支を管理しやすいと いう利点から太陽同期準回帰軌道(回帰日数11 日)を採用する.軌道を決定するためのパラメー タを表 2-2 に示す.

表 2-2 軌道要素

軌道長半径 [km]	7078
軌道傾斜角 [deg]	98.4
昇交点赤経 [deg]	135
近地点引数	0
離心率	0

図 2-2 システムブロック図

Ŧ	2 环	መራ ፲ሎ		質量	寸法	消費電力
杀	名称	四台 个小	1回 釵	[kg]	[mm]	[W]
データ処理	中央制御ユニット	CCU	1	1.5	100×100×50	0.5
(C&DH)	フラッシュメモリ	SD	2	0.002	32×24	0.28
雨山	電力制御ユニット	PCU	1	0.9	100×100×150	1
電刀 (FDC)	バッテリ	BAT	2	0.235	145×80×20	-
(EPS)	太陽電池	SA	180	0.0028	36.3×76.2	-
	ロンジンド半月市業	STDY	1	9	115×150×45	1.6(送信)
通信	らハント区文信候	SIKA	T	2	2 $115 \times 150 \times 45$	
(COM)	S バンドカブラ	SCPL	1	0.23	75×95×20	-
	S バンドアンテナ	SANT	2	0.18	φ80×10	-
	磁気センサ	GAS	2	0.104	38.1×107×20.6	0.175
	粗太陽センサ	RSS	1	0.01	φ35×9.0	0
	伸展マスト	MST	1	5	150×150×300	0.5
姿勢制御	磁気トルカ	MTQ	3	0.5	290×45×28	0.8
(AD&C)	ジャイロ	Gyro	3	0.018	29×29×18.4	0.25
	太陽センサ	SS	1	0.31	130×120×45	1
	GPS 受信機	GPSR	1	0.22	50×70×40	1.8
	GPS アンテナ	GPSA	1	0.22	50×45×15	-
5	放射線計測器	HPM	2	0.56	$100 \times 50 \times 50$	3(1)*
ミッション (EXP)	計測器データ処理	HPME	1	0.86	100×100×50	3.5(2)*
	耐久試験用ボックス	RTS	1	1	100×100×100	0.5
熱	ヒータ	HTD	4	0.015	-	5
(TCS)	温度センサ	TS	1	0.05	-	0.1

表 2-3	構成機器一	·覧表
-------	-------	-----

※…0内は低時間分解能で機器を作動させた時の消費電力を表す

3. 構造系

3.1. 構造系への要求

<u>基本機能</u>

本衛星の基本構造を形成し、すべてのミッショ ン期間を通じて搭載機器を安全に保持すること.

<u>環境に対する耐性</u>

地上,打ち上げ時,軌道上での機械的,熱的, 放射線に対する耐性を有すること.

<u>ロケットからのインターフェイス</u>

ロケットからのインターフェイス条件を満足 すること.

剛性要求

本衛星の打ち上げ形態は H-IIA によるピギー バック形態のため,小型衛星用 H-IIA ユーザーズ マニュアルに規定している剛性要求を適用する. 衛星分離部を固定した状態での剛性要求(第1次 固有振動数)を表 3-1 に示す.

表 3-1 剛性要求

	機軸方向	機軸直交方向	
第1次固有振動数	100[Hz] 以上	50[Hz] 以上	

機器取付けに関する配置要求

システム/サブシステムの機能を満足する搭載 機器の配置であること.

3.2. 構造設計

3.2.1. 構造様式

本衛星の構造様式は,図 3-1 に示すパネル4枚 を組み合わせた井桁型パネル構造とする.この構 造様式にした理由を以下に示す.

- パネルを組み合わせることによって、衛星の 剛性が高まるため
- ・ 機器搭載面積が大きいため
- マスト伸展機器は長細い形状で中心に配置する必要がある。その機器を配置するためのスペースが井桁中央部にあるため

図 3-1 井桁型パネル構造

3.2.2. 構体構成要素

本衛星の構体材料には、比剛性が高いハニカム パネル(スキン: Al7075, コア: Al1/4-5052-0.02) を用いる.ハニカムパネルのパネル厚さ,寸法を 表 3-2に示す.

次 0 2 / ニバム/ 小// ジババ/FC				
パネル		厚さ [mm]	寸法 [mm]	
上面	スキン	上下各 0.5	400 × 400	
パネル	コア	9	400 ^ 400	
下面	スキン	上下各 0.5	400×400	
パネル	コア	24	400×400	
内部	スキン	上下各 0.5	DCENOCE	
パネル	コア	9	369×269	
側面	スキン	上下各 0.5	2002265	
パネル	コア	9	390×365	

表 3-2 ハニカムパネルのパネル厚さ

3.2.3. 搭載機器配置

以下に示す配置方針のもと、3次元モデルを用 いて、搭載機器の配置を行う.

図 3·3 に搭載機器配置を示す.(図中の搭載機器の略語については,表 2·3 構成機器一覧表に示す.)

配置方針

- 搭載機器間、パネルと機器の間は、基本的に 30 mmのスペースを確保する
- 搭載機器を取り外す際に、他の機器を取り外 すことのないようにする
- ・ 衛星全体の質量バランスを考慮する
- ・ それぞれの機器の配置条件を考慮する

配置条件に制約のあるコンポーネントの詳細 を表 3-3に,また配置結果を図 3-3に示す.

機器	配置場所	
MST	天頂方向,衛星の中心	
SANT	天頂方向, 地球方向, 外部	
RSS	SS の反対側	
SS	RSS の反対側	
Gyro	各軸に平行	
MTQ	各軸に平行	
GPSA	天頂方向,外部	
HPM	天頂方向, 側面	
	伸展マスト,磁気トルカから離れた位置	

表 3-3 配置条件詳細

3.3. 構造解析

構造数学モデルを構築し、固有振動解析と静荷 重解析を行う.また、3次元モデルより衛星の質 量特性を求める.

3.3.1. 構造数学モデル

構造解析ソフト NASTRAN を用いて,構造数 学モデルを構築した.作業の効率化のため,モデ ルを以下に示す構築方針で簡略化した.

を平板同定してモデル化する.

構造数学モデルの構築方針

搭載機器は質点とする

図 3-2 に構造数学モデルの外観図,表 3-4 にモ デルプロパティを示す.

・ 構造パネルは,表 3-2 に示すハニカムパネル

図 3-2 構造数学モデル外観図

表 3-4 構造数学モデルプロパティ

項目	数值
節点数	2608 個
要素数	2462 個
要素特性数	13 個

図 3-3 搭載機器配置

3.3.2. 固有振動数解析

固有振動解析の結果として,表 3-5 に1次固有 振動数,図 3-4 に各軸方向の一次振動モードを示 す.これにより,本衛星の剛性は,表 3-1 に示す 剛性要求を満足することが分かった.

表 3-5 固有振動数の結果

	機軸方向	機軸直交方向
一次固有振動数	264 [Hz]	99.8 [Hz]

3.3.3. 静荷重解析

構造数学モデルを用いて,以下に示す設計荷重 による静荷重解析を行う.

<u>設計荷重</u>

小型衛星用 H-IIA ユーザーズマニュアルに規 定してある H-IIA 打ち上げ時の準静的加速度に, 安全率 1.5 を掛けて,その値を設計荷重とした. 設計荷重を表 3-6 に示す.

	表	3-6	設計荷重
--	---	-----	------

	機軸方向	機軸直交方向
設計荷重	9 G	$7.5~{ m G}$

<u>解析結果</u>

表 3-6 に示す設計荷重が機軸方向,機軸直交方 向それぞれから衛星全体にかかる場合,衛星に発 生する最大応力σを求める.それから安全余裕 MS を(3-1)より求める.

$$MS = \frac{\sigma_{cr}}{\sigma} - 1 \qquad (3-1)$$

ここでの σ_{cr} は、衛星パネル材料の許容応力で、

その値は、Al7075 の疲労破壊限度である 103 Mpa とする.

解析結果として,表 3-7 に本衛星に発生する最 大応力と安全余裕を示す.安全余裕は0以上であ り,打ち上げ時に衛星にかかる荷重に耐えること が分かった.

表 3-7 強度解析結果

	機軸方向	機軸直交方向
最大発生応力	22	16.4
[MPa]		10.1
安全余裕 MS	3.68	5.28

3.3.4. 質量特性解析

3 次元モデルより,質量,重心位置,慣性モー メント,慣性乗積を求め,表 3-8 に示す.ただし, 原点を下面パネル表面の中心とする.

表 3-8 質量特性解析結果

	-		-
項目	記 号	マスト展開前	マスト展開後
質量 [kg]	m	22.90	22.90
地名尔里	X_G	0.198	0.198
里心1型直 「]	Y_G	-19.84	-19.84
	Z_G	188.8	297.2
	IXX	5.48E-01	2.76E+00
	I_{YY}	5.52 E-01	2.76E+00
[kg·m²]	Izz	4.29E-01	4.27E-01
海华寺神	IXY	6.08E-02	6.08E-02
	I_{YZ}	-4.84E-02	-4.53E-02
[kg·m²]	IZX	4.06E-02	4.10E-02

4. 姿勢系

4.1. 姿勢系への要求

姿勢制御への要求は,放射線観測を行う際に地 球指向であること,さらに1周回のうち放射線帯 外帯に最接近して高分解能で観測を行う10分間 の精度を地球指向に対して5deg以内とし,観測 の妨げになる衛星自体の磁場の発生を抑えるこ とである.

4.2. 姿勢制御方式

混合型姿勢制御の提案

重力傾斜安定方式のみだと,小型衛星の大部分 をマスト部が占めてしまい,搭載機器に制限がか かる.また,地磁気姿勢制御のみだと衛星から磁 場を発生させてしまい,要求にそぐわない.よっ て,両者を組み合わせることで双方の利点を発揮 することができる混合型姿勢制御を提案する.

具体的には、磁気トルカにより衛星の残留磁気 を相殺し、本衛星の軌道高度において最も影響の 大きい地磁気トルクを打ち消すことで、本来必要 である値よりも小さな慣性能率で重力傾斜安定 が実行するように設計する.

4.3. 自然外乱トルクの概算

本衛星は重力傾斜安定を基本としているので 外乱としては以下の3つを考えればよい.

1. 地磁気トルク $\mathbf{T}_{\mathbf{m}} = \mathbf{M}_{\mathbf{m}} \times \mathbf{B} \tag{4-1}$

$$B = \frac{2M_e}{R_0^3} \tag{4-2}$$

 M_m :残留磁気モーメント(0.1[Am²]) B:磁束密度 M_e :地磁気ダイポール(8.1×10¹⁵ [Wbm]) R_0 :衛星,地球中心距離(6378+700 [km]) 上式より,地磁気トルクの最大値は,

$$|\mathbf{T}_{m}| \approx 4.57 \times 10^{-6} [\text{Nm}]$$
 (4-3)

2. 太陽輻射圧トルク

$$T_s = PAr_s \times (1+q) \tag{4-4}$$

- P:太陽輻射圧定数
- A:表面積
- r: 輻射圧中心と質量中心のオフセット
- q:鏡面反射率(q=0.6)
- 上式より,太陽輻射圧トルクの最大値は

$$T_s = 2.36 \times 10^{-7} \,[\text{Nm}] \tag{4-5}$$

$$T_a = r_s \times \frac{1}{2} \rho v^2 S C_D \tag{4-6}$$

r_s:空力中心と質量中心のオフセット
 ρ:大気密度
 ν:速度
 S:表面積
 C_p:抗力係数
 上式より,空力トルクの最大値は

$$T_a = 1.13 \times 10^{-7} \,[\text{Nm}]$$
 (4-7)

4.4. 姿勢系の構成

図 4-1 姿勢制御系系統図

図 4-1 に、本衛星の姿勢制御系系統図を示す. 姿勢制御系は、太陽捕捉、姿勢検出に精度の異な る精太陽センサおよび粗太陽センサ(SS,RSS)、角 速度検出に 3 軸のジャイロ(Gyro)、軌道検出に GPS、磁場検出に磁気センサ(GAS)を用いる.ま た、アクチュエータ、残留磁気キャンセラとして 磁気トルカ(MTQ)、重力傾斜による復元トルクを 発生させるための進展マスト(MST)、そしてこれ らを駆動させるソフトウェアを組み込んだ中央 演算装置(CCU)から構成される.

4.4.1. 姿勢系センサ

<u>太陽センサ(SS,RSS)</u>

2 軸の SS には精度のよい Aero Astro 社製の Medium Sun Sensor を使用する. 2 軸の RSS に は視野が広く,小型で軽量かつ消費電力が少ない Aero Astro 社製の Coarse Sun Sensor を使用す る. 諸元を下の表 4-1 に示す.

表 4-1 太陽センサ諸元

項目	\mathbf{SS}	RSS
視野 [deg]	120	120
精度 [deg]	± 0.024	± 5
寸法 [mm]	130×120×45	\$\$ 35×9.0
質量 [kg]	0.31	0.1
消費電力 [W]	1.0	0.0
動作温度 [℃]	-40 ~ +93	-50 ~ +80

<u>磁気センサ(GAS)</u>

GAS には, Honeywell 社製の HMR3000 を使 用する. 諸元を下の表 4-2 に示す.

表 4-2 HMR3000 諸元

項目	値
動作範囲「ヵ7」	5.0×10^{4}
判作型四【111】	(max 1.0×10 ⁵)
分解能 [nT]	1.0×10^{2}
精度 [deg]	0.5
寸法 [mm]	38.1×107×20.6
質量 [kg]	0.104
消費電力 [W]	0.175
動作温度 [℃]	-20~+70

<u>ジャイロ(Gyro)</u>

Gyroには小型で高精度のシリコンセンシングジャパン社製 CRS 03-02 を使用する. 諸元を下の表 4-3 に示す.

表 4-3 CRS 03-02 諸元

項目	值
測定範囲 [deg/sec]	±100
感度[mV/(deg/sec)]	20
寸法 [mm]	29×29×18.4
質量 [kg]	0.018
消費電力 [W]	0.05
動作温度 [℃]	-40 ~ +85

<u>GPS</u>

GPS 受信機(GPSR), GPS アンテナ(GPSA)に は小型衛星 SOHLA-1 に搭載されたものを使用す る.諸元を下の表 4-4 に示す.

表 4-4 GPS 諸元

項目	GPSR	GPSA	
寸法 [mm]	50×70×40	$50 \times 45 \times 15$	
質量 [kg]	0.22	0.22	
定常消費電力	15	0	
[W]	1.0	0	
最大消費電力	1.0	0	
[W]	1.8	0	
動作温度	-90 155	-95 150	
[°C]	-20 ~ +55	-39 ~ +90	

図 4-2 姿勢系センサ外観

4.4.2. 進展マスト(MST)

MST は、日本飛行機社製のコイラブル伸展マ ストを使用する. MST の進展部は 3 本のガラス 繊維強化プラスチックで構成され、コイル状に屈 曲された状態で収納されている. 展開時は溶断式 アクチュエータにより拘束を解除後、部材の弾性 により進展する.図 4-3に伸展中のMST を、MST の仕様と MST 進展前後の慣性能率をそれぞれ表 4-5、表 4-6 に示す.

図 4-3 伸展中の MST

表 4-5 コイラブル伸展マスト諸元

項目	値
収納時寸法 [mm]	$150 \times 150 \times 300$
質量 [kg]	5.0
マスト長さ [m]	1.0
先端部質量 [kg]	1.5
動作温度 [℃]	-10 ~ +60

表 4-6 MST 展開前後の慣性能率

MST 展開前 [kgm ²]		MST 展	開後 [kgm ²]
I_x	0.545	I_x	2.76
I _y	0.550	I _y	2.76
I_z	0.428	I_z	0.426

4.4.3. 磁気トルカ(MTQ)

本衛星では,残留磁気除去およびアクチュエー タとして,1軸MTQを3個使用する.MTQはま ず,アクチュエータとして設計し,そして残留磁 気キャンセラとしての性能を評価する.今回設計 した値を表 4-7にまとめる.

<u>アクチュエータとして設計</u>

MTQ に求められる最大出力は MST 面が地球 側を向いてしまった状態から,姿勢を反転させる 場合を想定したものである.地磁場の向きによっ て MTQ の出力トルクは変化するので,ここでは 磁東密度を *B* とした時の最大出力の半分の値で も MST 展開後の重力傾斜トルクより大きくなる よう, (4-7),(4-8)式を用いて設計した.

$$M_m = \mu_{eff} \cdot n \cdot I \cdot A_{core} \tag{4-7}$$

M_m:磁気モーメント [Am²] μ_{eff}: 実効透磁率 [H/m] n: コイル巻き数 I:電流 [A] A_{core}: コアの断面積 [m²]

$$\frac{1}{\mu_{eff}} = \frac{1}{\mu_a} + \frac{\ln(p) - 1}{p^2}$$
(4-8)

 μ_a :初期透磁率 [H/m] p: コア全長-直径比(= L_{core}/D_{core})

表 4-7のように設計した MTQ の最大出力は

$$\left|\mathbf{T}_{\mathbf{MIQ}}\right| = \left|\mathbf{B} \times \mathbf{M}_{\mathbf{m}}\right| = 2.69 \times 10^{-5} \quad [\mathrm{Nm}] \qquad (4-9)$$

また, MST 展開後の重力傾斜トルクは

$$\mathbf{T}_{g} = -\frac{3\mu}{R_{0}^{3}} \begin{bmatrix} I_{y} - I_{z} \\ I_{x} - I_{z} \\ 0 \end{bmatrix}$$
(4-10)

 μ :地球の重力定数(3.98613×10^{5} [km³/s]) I_{i} : 慣性能率 (i = x, y, z) 式(4-10)において MST 展開後の慣性能率差を

 $|I_i - I_z| \approx 2.00$ (i = x, y) [kgm²]と見積もると, その最大値は

$$\|\mathbf{T}_{g}\| = 6.99 \times 10^{-6} \,[\text{Nm}]$$
 (4-11)

よって,これにその他の外乱(4-3),(4-5),(4-7)式を 加えたものよりも式(4-11)の値が約2.3倍大きく, 今回設計した MTQ の性能は,設計要求を十分満 たしていることが分かる.

項目	名称·值
コア材	45permalloy
コイル寸法 [mm]	\$\$ 20×160
コイル質量 [kg]	0.3
初期透磁率 [H/m]	5000
ワイヤ直径 [mm]	0.25
発生磁気モーメント [Am ²]	0.6
消費電力(3個合計)[W]	0.8

表 4-7 MTQ 設計値

残留磁気キャンセラとしての性能評価

CCU の性能から電流は 0.02 mA きざみで制御 できるので,(3-7)式から磁気モーメントは 0.02 Am²単位で制御できる.よって,残留磁気除去に おける誤差は±0.02 Am² 程度と見積もることが できる.この誤差による磁気的外乱トルクは(4-3) 式での M_m に 0.02 Am²を用いて

4.57×10^{-8} [Nm]

と推算でき、定常運用モードではこの影響を考え なければならない.

4.5. 姿勢検出方法

本衛星は地球指向の衛星であるが,地球センサ は小型衛星用で約 6500 万円と非常に高価であり, 今回は搭載を見送った.そのため,地球指向衛星 で常時捕捉できる地球を基準としての絶対角の 検出は行えないが,SS による機体座標系での太 陽指向ベクトルと GPS の軌道と時間情報から求 まる慣性系での太陽指向ベクトルの関係を考慮 することで絶対角の検出が行える.

具体的には図 4-4 のように慣性系,機体座標で の太陽指向ベクトルをそれぞれ D_{si} , D_{sb} とすれ ば,これらのベクトルを一致させるような行列が 機体座標系から慣性系への変換行列になる.よっ て,図 4-5 の α , β , γ の角度を用いて Euler の座 標回転を行えばよく, \mathbf{n} を Z 軸回りに $-\beta$, Y 軸 回りに $-\gamma$ 回転し Z 軸に一致させ,次に D_{sb} を Z 軸回りに α 回転させ D_{si} に移し,最後に \mathbf{n} を Y 軸回りに γ , Z 軸回りに β 回転させ元に戻せばよ い.

よってこの座標変換行列 $[C_r]$ は,

$\begin{bmatrix} C_T \end{bmatrix} = \begin{bmatrix} C_\beta^3 \end{bmatrix} \begin{bmatrix} C_\gamma^2 \end{bmatrix} \begin{bmatrix} C_\alpha^3 \end{bmatrix} \begin{bmatrix} C_{-\gamma}^3 \end{bmatrix} \begin{bmatrix} C_{-\beta}^3 \end{bmatrix} \quad (4-12)$

で与えられ、この行列による変換をたとえば XB 軸の単位ベクトルに行えば、慣性系での+XB面の 方向が分かる.したがって、求めた変換行列を機 体座標系の標準基底ベクトルに用いれば、その軸 の慣性系での方向が分かり衛星の姿勢を検出で きる.

また,SSとGPSを用いた姿勢検出方法は太陽 がSSの視野に入らない場合使用できないので, その際には上記の検出方法から得た姿勢角にジ ャイロから得た角速度の積分値である 絶対角を 加算して現在の姿勢角を求める.つまり,本衛星 ではSSとGPSから算出する姿勢角とジャイロ出 力により常に姿勢を把握できる.

図 4-4 各座標系での太陽指向ベクトル

図 4-5 機体座標系から慣性系への変換

4.6. 姿勢制御シーケンス

図 4-6 に姿勢系フローチャートを,表 4-8 に各 モードにおける使用機器を示す.以下,各モード について詳細を述べる.

図 4-6 姿勢系フローチャート

表	4-8	各モー	ドにおけ	る使用機器
1	T O	цч		

モード名	SS	RSS	Gyro	MST
初期捕捉	0	1	0	0
MST展開	0	0	3	0
ターン	0	0	3	1
ダンピング	0	0	3	1
重力傾斜	0	0	3	1
太陽補足	1	0	3	1
GAS, MTQ, GPSA/RはどのモードでもON				

4.6.1. 初期太陽捕捉モード

フェアリング分離時に伴い与えられる Z_B 軸回りの角運動量を用い,図 4-7のようにRSSの 視野角に,太陽が捕捉されるよう回転させる.補 足後,次式に従いMTQを制御,デスピンを行う.

$$M_{i,B} = -M \operatorname{sgn}(\frac{dB_{i,B}}{dt})$$
 $(i = x, y, z)$ (4-13)

 $B_{i,B}$:機体座標系の地磁場成分 $M_{i,B}$:磁気モーメント成分 $sgn(\cdot)$ は符号関数

(4-13)式^[7]は、 $B_{i,B}$ の時間変化率が減衰するよう に MTQ によって磁気モーメントを発生させるこ とによる、各軸まわりの回転減衰を意味している.

図 4-7 初期太陽捕捉モード

4.6.2. MST 展開モード

初期太陽捕捉モード後、すぐに MST を展開し、 - Z_B 面を地球に向けた状態で安定していればそのまま定常運用モードへ移行、- Z_B 面が反対を向いていたらターンモードへ移行する.

4.6.3. ターンモード

MST 面が地球側に向いてしまった場合, MTQ をアクチュエータとして用い, 姿勢を反転させる.

 Z_B 軸の向きを変えるよう反転するためには、 回転軸を X_BY_B 平面に設定し、慣性系で固定しな ければならないので GAS が検出する機体座標系 での周囲の磁場の変化に合わせて MTQ の出力も 変化させなければならない. すなわち,

$$\mathbf{T}_{MTQ} = \mathbf{M} \times \mathbf{B} = \begin{bmatrix} M_{y,B} B_{z,B} - M_{z,B} B_{y,B} \\ M_{z,B} B_{x,B} - M_{x,B} B_{z,B} \\ M_{x,B} B_{y,B} - M_{y,B} B_{x,B} \end{bmatrix}$$
(4-14)

より回転軸を $X_{B}Y_{B}$ 平面に設定するため,

$$M_{y,B} = \frac{B_{y,B}}{B_{x,B}} M_{x,B}$$
(4-15)

とし、その後 α deg 回転させた瞬間の機体座標系 ($O - X'_B Y'_B Z'_B$)での磁気を検出すれば、慣性系 で回転軸を固定するため、

$$\mathbf{T}'_{MTQ} = \mathbf{M}' \times \mathbf{B}' = \mathbf{T}_{MTQ} \Big|_{O-X_B Y_B Z_B}$$
$$= \Big[C_T' \Big] \mathbf{T}_{MTQ} \Big|_{O-X'_B Y'_B Z'_B}$$
(4-16)

となるようにM'を制御する.

ここで、 α deg 回転後の各パラメータは[´]付きと し、 $O - X_B Y_B Z_B$ 系から $O - X'_B Y'_B Z'_B$ 系への変換 行列を $\begin{bmatrix} C'_T \end{bmatrix}$ と表した.

MTQ 出力による角運動量は微小なため,上記 の制御を1秒間隔で行えば回転軸を慣性系でほぼ 固定でき,反転後の地球指向5 deg 以内を目安に ダンピングモードに移行する.

4.6.4. 定常運用モード

定常運用モードはダンピングモード,重力傾斜 モード,太陽捕捉モードの3つから構成される. 重力傾斜モードではMTQを衛星の残留磁気の相 殺に利用し,より高度な放射線観測を行うと同時 に衛星に作用する地磁気トルクの発生を防ぐ.太 陽捕捉モードでは,MTQにより衛星を Z_B 軸回り に回転させ,軌道上で赤道からの最遠点である Capture Spot(図 4-8参照)に至るまでにSSによ り太陽を捕捉する.ダンピングモードでは残留磁 気の打ち消し漏れによって生じる想定外の外乱 等による地球指向精度の悪化を監視,校正する. 各姿勢モードの実行領域図を図 4-8に示す.

重力傾斜モード

地心ベクトルと Z_B 軸がなす角を θ とし、その回転軸回りの慣性能率を I_{θ} 、 Z_B 軸まわりの慣性能率を I_z とすれば、その軸回りに働く重力傾斜トルク T_{θ} は次式で表わされる.

$$T_{\theta} = \frac{3}{2} \Omega_0^{2} (I_z - I_{\theta}) \sin(2\theta_y)$$
$$= \frac{k_P}{2} \sin(2\theta_y) \qquad (4-17)$$

ここで、 Ω_0 は軌道の回転速度 $\sqrt{\mu/R_0^3}$ (μ :地球 の重力定数、 R_0 :衛星、地球中心間距離)、 k_P は $3\Omega_0^2(I_z - I_\theta)$ である.

これより、ポテンシャルエネルギ E_n は

$$E_P = \int_0^\theta T d\theta = \int_0^\theta \frac{k_P}{2} \sin(2\theta) d\theta$$
$$= -\frac{k_P}{4} (\cos 2\theta - 1) \qquad (4.18)$$

で与えられる. 姿勢角と重力傾斜によるポテンシ ャルエネルギの関係は上式より

$$\cos 2\theta = 1 - \frac{4}{k_p} E_p \tag{4-19}$$

これより *x* = 2*θ* とすれば, *x* << 1より Taylor 展 開を行い

$$1 - \frac{1}{2}x^2 = 1 - \frac{4}{k_p}E_p \tag{4-20}$$

よって,

$$x^{2} = \frac{8}{k_{p}} E_{p}$$
 (4-21)

であり、 $x \in x + \Delta x$ まで変位させるのに用いたエ ネルギを ΔE_n とすれば、

$$(x + \Delta x)^2 - x^2 = \frac{8}{k_p} \Delta E_p$$
 (4-22)

ここで、外乱トルクTによる変位 $\Delta \theta$ によるエネ ルギがすべてポテンシャルになったとすれば、

$$\Delta E_n \le \Delta E = T \Delta \theta \tag{4-23}$$

となり,

$$\theta \le \frac{T}{k_n} - \frac{1}{2}\Delta\theta \tag{4-24}$$

が導ける.これに $T = T_s + T_a$, $\Delta \theta = 0$ を用い, また本衛星はほぼ等密と考えて $I_{\theta} \ge I_x$ より

$$k_P = 3\Omega_0^2 (I_z - I_x)$$

とすれば、重力傾斜トルクと外乱トルクが最大で も $\theta \approx 3.1$ の位置で釣り合い、重力傾斜安定が地球 指向 3 deg で実行できることが分かる.

本モードは観測を行う放射帯線外帯付近の 10 min 実行する.

<u>太陽捕捉モード</u>

Gyro による姿勢検出は、そのドリフトによる 誤差が含まれるので太陽を定期的に捕捉し、ドリ フトを校正するため、太陽補足モードを実行する.

太陽捕捉モードに移行すると、Gyroから絶対 角を算出し、MTQを用いてSSが取り付けられて いる面が太陽側に向くように Z_B 軸回りに衛星を 回転させ、太陽を捕捉する、図 4-8 で定義した Capture Spot でSSを用いることにより、どの時 期においても太陽を捕捉することが可能である. Gyroから得られる絶対角はそのドリフトのため 誤差が生じているが、SS の視野角が 120 deg な ので支障はない.また、本衛星は重力傾斜安定な ので、Capture Spot 付近では磁力線と Z_B 軸がほ ぼ直行する状態、すなわち $B_{z,B} \approx 0$ を保ちながら 衛星は運動している.よって、(4-14)式から、 $M_{z,B} = 0$ とすれば Z_B 軸まわりの回転を実行で きる.

MTQで Z_B 軸回りに1回転させるのに必要な時間は、 Z_B 軸回りの回転の運動方程式

$$I_z \ddot{\theta}_z = T_{MTO} \tag{4-25}$$

に対して
$$T_{MTQ} = const.$$
とすれば,
 $\dot{\theta}_z = \frac{T_{MTQ}}{I_z}t + \omega_0 (\omega_0 : 初期角速度)(4-26)$

と Z_B 軸回りの角速度が算出でき、これより(4-9) 式の結果と表 4-7から、最大出力では遅くとも5min で半回転できると分かる.

よって,最大出力トルクの半分の値を基準とし, Capture Spot に至るまでの 10 min でスピンアッ プし太陽を走査,捕捉後は 10 min かけてデスピ ンしダンピングモードに移行する.

<u>ダンピングモード</u>

MTQ を用いた残留磁気の打ち消し漏れによ って生じる地磁気トルクは約4.57×10⁻⁸Nm で あり,この値は重力傾斜トルクの100分の1ほど なので重力傾斜安定への影響は無視できる.しか し,想定外の外乱によって姿勢が乱れるかもしれ ず,次の制御モードへの移行がタイムテーブル通 りに実行できなくなる恐れがある.よって,いち 早く姿勢を回復させるための制御モードとして 本モードを設定する.

具体的には放射線観測時や太陽捕捉実行時以 外で重力傾斜安定が地球指向 5 deg 以内を保てて いるか監視し,保てていなければ MTQ をアクチ ュエータとして用い,地球指向 3 deg 以内に戻す.

制御則としては(4·13)式でi = zをしたものを 用い, X_B / Y_B 面まわりの回転減衰を実行する.

本モードは軌道1周約98 min のうち,重力傾 斜モード,太陽捕捉モード以外の部分を受け持っ ているが,振動減衰実行時以外は重力傾斜モード

と同等であり, 観測結果による観測モードの切り 替えに柔軟に対応できる.1周のうち各モードの 占める時間を図 4-9に示す.

図 4-9 各姿勢モード実行時間

5. 熱系

5.1. 要求条件

5.1.1. ミッション・サブシステム要求

表 5-1 に主な搭載機器の許容温度範囲を示す.

		温度	£制約
機器名称	略称	上限	下限
		[°C]	[°C]
データ処理系			
中央制御ユニット	CCU	75	-20
フラッシュメモリ	RAM	85	-25
電力系			
バッテリ	BAT	40	0

表 5-1 主な搭載機器の許容温度範囲

		[°C]	[°C]
データ処理系			
中央制御ユニット	CCU	75	-20
フラッシュメモリ	RAM	85	-25
電力系			
バッテリ	BAT	40	0
電力制御ユニット	PCU	75	-20
姿勢制御系			
磁気センサ	GAS	70	-20
粗太陽センサ	RSS	93	-40
磁気トルカ	MTQ	60	-10
ジャイロ	Gyro	85	-40
太陽センサ	SS	80	-50
GPS 受信機	GPSR	55	-20
GPS アンテナ	GPSA	50	-35
通信系			
S バンド送受信機	STRX	50	-15
S バンドカブラ	SCPL	50	-15
S バンドアンテナ	SANT	50	-35
ミッション系			
放射線計測器	HPM	60	-100
計測器データ処理部	HPME	75	-20

5.1.2. 外部熱環境

外部熱環境として太陽放射, アルベド, 地球赤 外放射を考慮する. それぞれの値を表 5-2 に示す.

表 5-2 外部熱環境

太陽光強度[W/m ²]	1420
アルベド係数[-]	0.35
地球赤外放射[W/m2]	216

5.2. 解析モデル

構造系が配置検討したものを参考に、"Thermal Desktop"を用いて、熱解析モデルを作成した.

5.2.1. コンポーネント

各コンポーネントは,同量の熱容量を持つアル ミニウムの直方体や円柱としてモデル化を行っ た.

5.2.2. 表面処理

熱制御面として下面パネル,及び側面パネルの 太陽電池セルが付いていない部分の表面処理を 様々に変更した.そしてコンポーネントの温度が 許容範囲に収まるようにした.筐体内部は熱が偏 らないように黒色塗装で統一した.検討した表面 処理を表 5-3 に示す. αは太陽光吸収率を示し, ε は赤外放射率を示す.

名称	α	ε
黒色塗装	0.92	0.85
太陽電池セル	0.81	0.8
化学皮膜処理	0.56	0.07

表 5-3 表面処理

衛星内の平均温度が低かったため、下面パネル、 及び側面パネルの太陽電池セルが付いていない 部分の表面処理には赤外放射率の低い化学皮膜 処理を採用した.

5.2.3. ヒータ

バッテリは氷点下での動作が不可能であるため,5Wのヒータを4つ搭載する.

5.2.4. ラジエータ

放射線検出器は,できるだけ低い温度範囲内で 観測を行う方が,より精度の良い結果を得られる そのため,検出器に放熱板を搭載する.

5.3. 解析結果

解析結果を表 5-4にまとめる.

表 5-4 解析結果

••••			
	解析結果		
表機器名称	最高	最低	
	[°C]	[°C]	
データ処理系			
中央制御ユニット	40	-3	
フラッシュメモリ 1	41	-3	
フラッシュメモリ 2	41	-3	
電力系			
バッテリ	40	0	
電力制御ユニット	40	-3	
姿勢制御系			
磁気センサ	42	-6	
粗太陽センサ	50	-19	
磁気トルカ1	40	-3	
磁気トルカ 2	40	-3	
磁気トルカ3	40	-4	
ジャイロ 1	43	-9	
ジャイロ 2	41	-6	
ジャイロ 3	45	-10	
太陽センサ	44	-9	
GPS 受信機	40	-3	
GPS アンテナ	39	-7	
通信系			
S バンド送受信機	40	-3	
Sバンドカブラ	40	-3	
S バンドアンテナ 1	39	-7	
S バンドアンテナ 2	40	-3	
ミッション系			
放射線計測器1	43	-6	
放射線計測器 2	45	-8	
計測器データ処理部	40	-3	

これらの結果は十分に時間が経過したあとの 温度である.これによりモデル化したコンポーネ ントが許容温度範囲内に収まっていることが分 かる.

太陽電池セルが搭載された各構体パネルの解 析結果を図 5-1 に示す.

図 5-1 各構体パネルの解析結果

6. 電力系

6.1. 電力系の構成

太陽電池セルで発生した電力は, PCU 内の Switching Regulator を通り,日照時には,各電 力利用機器(負荷)へ供給しつつ,余剰電力がバ ッテリへ充電される.日陰時には,バッテリより 必要な電力を負荷へ供給する.

太陽電池セルは、下面を除く5面にボディマウントで貼り付ける.

PCU の主な役割は 3 つある. 定まった電力を BUS に出力すること. CCU から受けた指令を基 に各機器の ON/OFF を行うこと. そしてバッテ リの充放電管理を行うことである.

今回は電力制御方式として Peak Power Tracking 制御 (PPT 制御)を採用する. PPT 制 御とは, Switching Regulator により太陽電池セ ルの動作電圧を刻々と変化させながら最適動作 電圧で発電させる方式のことである. この制御方 式は,必要のない余剰電力を外に逃がすシャント 制御と違い,アレイの動作点を変えることによっ て最大電力を常に引き出そうとする制御方式で ある. 設定する動作電圧は中央制御ユニット (CCU)によって指定される. この制御方法では, 電力を捨てずにぎりぎりまで発生電力を引き出 すので,消費可能電力が大きくなる利点がある. 小型衛星であっても,この PPT 方式による発電 を行うことによって,比較的大きな電力を得るこ とができる.

本衛星の電力系のシステムブロック図を図 6-1 に示す.また、本章で使用する記号の割り振 りについて表 6-1 に示す.使用する太陽電池セル、 バッテリの概要については表 6-2 に示す.

記号	定義	値
Р	発生電力 [W]	
P _{ce}	日陰時消費電力 [W]	23.6
P _{cd}	日照時消費電力 [W]	22.2
η_{sw}	スイッチング効率	0.85
η_{ppt}	PPT 追尾効率	0.90
η_{BAT}	バッテリ充電効率	0.90
η_{LINE}	負荷への伝送効率	0.90
V_d	日照時バッテリ電圧 [V]	15.4
Ve	日陰時バッテリ電圧 [V]	14.6
T_d	日照時間 [hour]	1.06
T _e	日陰時間 [hour]	0.59
С	バッテリ容量 [Ah]	5.0
מטת	Depth of Discharge	
עטע	(バッテリ放電深度)[%]	
Ат	パネルの温度と	
$\angle I_{SA}$	セル特性基準温度の差 [℃]	

表 6-1 使用記号とその定義,及びパラメータ

製造元 SHARP 種類 GaAs 太陽電池セル 総貼り付け枚数 180 枚 (1 枚当たり) 寸法 [mm] 36.3×76.2 発電効率 [%] 26製造元 SANYO リチウム 種類 イオン 型番 UR18650F バッテリ 4 直列 バッテリセル数 ×2 並列 容量 [Ah] 5.0電圧 [V] $14.6 \sim 15.4$ 温度範囲 [℃] $0 \sim 40$

表 6-2 使用機器概要(電源系)

6.2. 電力系への要求

6.2.1. システム要求

システム要求を表 6-3 に示す. ただし, φ は太 陽電池パネルへの太陽入射角を表す. (図 6-2 に 定義する)

尚,太陽電池セルの各面における集合体のこと を太陽電池パネルと呼ぶこととする.つまり,本 衛星は太陽電池パネルを5枚持ち合わせている.

表 6-3 システム要求

軌道	太陽同期準回帰軌道
太陽入射角 φ [deg]	0~90
(発電時)	±5 deg(姿勢精度)
高度 [km]	700
太陽電池セル	キリシリケント
貼り付け方法	ホナイマウント
太陽電池セル貼り付け	400×400
可能面積 [mm²]	400×400
姿勢制御方式	混合型姿勢制御方式
運用期間	1年

図 6-2 太陽入射角 *φ* の定義

6.2.2. 各系からの要求

各系からの電力要求を付録に示す.さらに, 姿 勢制御の運用計画の概要を表 4-8 に示す.

電力解析の条件は発生電力が最も厳しくなる 場合を想定して計算を行う.よって,高時間分解 能測定を行う重力傾斜モードのときにおいて,電 力解析を行う.

6.3. BUS 電圧の決定

BUS 電圧が高いと流れる電流が小さいため,細 いハーネスを使用することができる.これによっ て,構造体の質量を軽量化できるメリットがある. また,バッテリの内部抵抗も減らすことができる ので,バッテリにおける発熱も少なくなる.

運用時の消費電力が最大になるのは日陰側で ヒータを使用するときである.このとき,消費電 力は最大 32.6 W となる.計算式については 6.4 節に示す.このときに最大電流がバッテリから流 れる.最大電流値と BUS 電圧の関係を図 6-3 に 示す.

図 6-3 より BUS 電圧は 10~20 V の範囲内に なるように選択する.

6.4. 発生電力解析

太陽電池セルは,温度により発生電力が変化す る.これは,温度によって太陽電池セルの電圧-電流特性が変化するためである.本衛星の電力制 御には PPT 制御を用いており,各温度における 最適動作電圧を追尾する.本電力解析では,最適 動作電圧と電流値の温度特性を,温度に対して線 形に近似する方法を用いて発生電力の計算を行 った.

また、太陽電池セルの効率は放射線により劣化 する.衛星は、寿命末期においても所要の電力を 供給し得るように設計する必要がある.しかしな がら、今回は運用期間が1年と短い.1年後の放 射線による電力の劣化率は2.6%未満であり、こ れは無視することができる.表 6-4 に今回用いる GaAs 太陽電池セルの性能を示す.

表 6-4 GaAs セル性能表

	記号	値
最適動作電圧* 1[Ⅴ]	V _{mp}	2.3
V _{mp} の温度特性係数 ^{*1}	α_V	-6.5E-03
最適動作電流*1 [A]	I _{mp}	0.45
I_{mp} の温度特性係数 *1	α_I	$2.0 \text{E} \cdot 05$
10 年後の		77
動作電力劣化率[%]		11

*1…セル特性温度が 25 ℃,かつ一年の中で太陽入射エネルギが 最小となる7月での値を使用することとした

6.4.1. 太陽電池セルの貼り付け検討

太陽電池セルの貼り付け方法の検討を行った.今回の構造体の大きさは1辺が400 mm の立方体で,地球方向を向いている面を除いた, 5面にボディマウントで貼り付ける.また,太 陽電池セルは,外縁及びセル同士の間隔を3 mm あけて配置する.

太陽電池セル貼り付けパターンの検討結果 を図 6-4 及び図 6-5 に示す.

図 6-4 太陽電池セル貼り付けパターン(Zb+面) (1はGPS, 2はMST, 3はHPM, 4はSANT,

その他は SA を表す)

図 6-5 太陽電池セル貼り付けパターン(側面) (3 は HPM, 5 は RSS, 6 は SS を表す)

6.4.2. 太陽電池セル直列数の決定

太陽電池パネルで発生させた電力をバッテリ に蓄積するには、太陽電池セルでの発生電圧がバ ッテリ電圧よりも高い必要がある.本衛星で利用 するリチウムイオンバッテリの電圧は、最大 15.6 Vになるので、充電時には、これよりも常に高い 発生電圧が必要である.

発生電圧 V_{SA} は, バッテリ電圧V_{BAT} について, (6-1)の条件を満たす.

 $V_{SA} \ge V_{BAT} + V_{LOSS} = 17.1 \tag{6-1}$

ここで、 V_{LOSS} とは PCU での電圧減少のことで あり、 V_{LOSS} =1.5 V である.

直列数による VSA の値は(6-2)で表せる.

$$V_{SA} = V_{mp} \times$$
 直列数 (6-2)

セル電圧は太陽電池セル温度に依存し,太陽電 池セル温度 T_{SA} と太陽電池セル最適動作電圧 V_{mn} の関係式を(6-3)に示す.

 $V_{mp} = (V_{mp} + \alpha_V riangle T_{SA})$ (6-3) 計算は表 6-4 の値を用いて行った.

図 6-6 に直列数と発生電力の関係を示す.太陽 電池パネルの熱解析結果より,太陽電池パネルの 温度範囲は-10.5~50 ℃となる.この範囲で常に 要求電圧を満たすことができるのは,セルの直列 数が8以上のときである.

直列数9のとき、バッテリ電圧と太陽電池パネ ルでの発生電圧の差は、50 ℃のときに最低とな り、2.1 V である.

6.4.3. MST による影の影響

電力解析を行う際は,最も厳しい条件で計算を 行う必要がある.今回は重力傾斜安定方式にて衛 星を制御するため,伸展マストが Z_B+軸に伸びる. このときに影ができるので,その影響について検 証する.

検証は,発生電力が最少になる場合を想定して 行う必要がある.よって,図 6-7 に示すように,

(a) 太陽光入射面積が最も小さいとき

(b) 影になる太陽電池セルが最も多いときの2通りで行う.

図 6-7 伸展マストによる影響検証

1. (a)のとき

影になるパネル数は最も少ないが,太陽 光入射面積は最も小さくなる.この場合の 平均発は表 6-1の値を用いて,かつ1直列 分の電力が発生しないと考えると,36.2W 発生することとなる.

2. (b)のとき

影になるパネルの枚数は最も多いが,側 面での発生電力が増える(太陽光入射面積 が最も多くなる)ことにより,(a)と同様に計 算を行えば平均発生電力は42.7 W となる.

以上の 1, 2 より, 最も条件が悪くなるのは(a) の場合であることが分かるので, この場合にて以

後計算を行う.

また,伸展マストによる影がある場合は,伸展 マストによる影がない場合の平均発生電力と比 べて,約7.3%発生電力が下がっている.以下で は、このことを考慮し、計算を行っていくものと する.

6.4.4. 発生電力の計算

発生電力を(6-4)の式より求めた.

 $P = (a \times \phi) \times (V_{mp} + \alpha_V \varDelta T_{SA})$

 $\times (I_{mn} + \alpha_I \varDelta T_{SA}) \times \cos\varphi \quad (6-4)$

ただし,式中の*a* はストリング並列数を表し, 本衛星では4である.また,*b* は太陽電池セルの 直列数を表し,本衛星では9である.

熱解析の結果より、日照時のパネルの温度変化 は図 6-8 のようになる. $riangle T_{SA} = T - 25 °C とな$ る. 姿勢精度より、日照時の充電中に太陽入射角 $<math>\varphi$ の振れ幅が最大±5 deg なので、 (φ +5) deg として、より悪条件で発生電力を計算する.

図 6-8 パネルの温度変化

これらのことを考慮し,表 6·1 の値を用いて計算 を行うと,平均発生電力は 44.5W となる.

6.5. バッテリの設計

バッテリの設計は、出力電圧、寿命のそれぞれ が要求を満たすようにバッテリを選定し、組み合 わせる必要がある.

本衛星に使用するバッテリは、比較的軽く、ま

た充放電による劣化が少ないリチウムイオンバ ッテリを使用する.

リチウムイオンバッテリは充放電による劣化 が少ないと一般的には言われているが,他のバッ テリと同様に,バッテリ放電深度 (Depth of Discharge を略して以下では DOD と表わす)が 40%以下となるように設計を目指す.本解析では 最悪の場合を考慮し,1並列のバッテリが使用不 可能になった場合を想定して計算を行う.つまり, バッテリ容量は2.5 Ah する.

バッテリ電圧は DOD と温度特性により大きく 変化する. 放電電圧は日陰時と日照時で異なり, 今回の解析では日陰時にバッテリ温度が0℃,日 照時には40℃として,図 6-9の関係を用いて解 析を行った. バッテリ電圧は表 6-1 に示すように 日陰時では3.65 [V/個]×4 [個]=14.6 V,日照時 では3.85 [V/個]×4 [個]=15.4 V 発生することが 分かる.

Discharge temperature characteristics

6.6. 電力収支解析

日陰時に使用する機器の電力はすべてバッテ リより供給されなければならない.そのために, 日照時のバッテリへの充電電流量と日陰時の放 電電流量の関係が等しくなる必要がある.このた めの解析が電力収支解析である.

6.6.1. 電力収支解析の前提条件

電力収支解析の前提条件は表 6-1 に示した通り である.

また、ミッション系からの要求として、電力系 は地球周りの公転1周を1サイクルとして電力収 支を成立させる必要がある.総発生電力と総消費 電力の関係を図 6-10 に示す.

図 6-10 発生電力と消費電力の関係

6.6.2. 電力収支の計算方法

(日陰時)

日陰時の放電電流量*B*_eを(6-5)で計算する. 添え 字 *e*は日陰時を表す.

$$B_e = \frac{P_{ce} T_e}{\eta_{LINE} V_e} \tag{6.5}$$

(日照時)

日照時の充電電流量*B_d* を(6-6)で計算する. 添 え字*d* は日照時を表す.

$$B_d = \frac{(\eta_{SW} \eta_{PPT} P - P_{cd}) T_d \eta_{BAT}}{V_d}$$
(6-6)

充放電電流量と(6-7)を使って, バッテリの放電 深度 DOD を計算する.

$$DOD = \frac{1}{c} \left(\sum B_e - \sum B_d \right) \tag{6-7}$$

*DOD*の値を,日陰・日照の境界点(図 6-11 に 定義)を境にして計算する.

DODの計算は図 6-11 の 1 から開始し, 反時計 周りに周回方向をとる.

6.6.3. 電力収支解析結果

表 6-1 の値を用いて行った解析結果を図 6-12 に 示す. *DOD*は最大約 46.1 %まで上がるが,最終 的には約 5.0 %の余剰電力が発生し,1周回でバ ッテリは満充電となることが分かる.

図 6-12 地球1周回における電力収支計算結果

6.6.4. バッテリ充電

今回使用するバッテリは、充電時の温度によっ て充電時間が異なってくる.バッテリの充電特性 は図 6-13 に示す通りである.

図 6-13 充電特性

本衛星の日照時間は約 63 分である.そして, バッテリの DOD を 46%まで使用した場合には, 容量が 1250 mAh まで使用されることとなる(1 並列は使用不能となっていると考えているので, バッテリ容量は 2.5 Ah としている). このとき, 各温度において満充電までかかる時間が,日照時 間よりも短くなくてはならない. しかしながら, 図 6-13 より,10 ℃未満では日照時間を要充電時 間が上回る.よって,充電時はバッテリ温度を 40 ℃ 近くに保つ必要があることが分かる. 7. 通信系

7.1. 通信系の役割

通信系の役割を以下に示す.

- 本衛星から地上局へのミッションデータ, H.K.データのダウンリンク
- ② 地上局から本衛星へのコマンドのアッ プリンク

7.2. 通信系への要求

ダウンリンクするデータはミッションデータ とH.K.データである.そのうちミッションデータ は宇宙空間で取得した放射線のデータである.ミ ッション系からの要求より1日で取得される放射 線のデータを1日で衛星から地上に送信する必要 がある.放射線のデータは地球1周分で7.25 MB である.つまり1日に約115.9 MBのデータを地 上に送信する事となる.H.K.データのデータ量は ミッションデータの量に比べてとても小さいの で考慮に入れない事とする.よって1日に地上に 送信するデータ量は115.9 MBである.

7.3. 通信系の設計

7.3.1. 地上局の選定

通信は本衛星と地上局の1対1直接通信で行う. 本衛星のダウンリンクするデータ量は1日あたり 115.9 MBと大きい.そのため通信時間をできる だけ稼ぐ必要がある.本衛星の軌道は太陽同期準 回帰軌道なので高緯度にある地上局ほど通信時 間を長く確保する事ができる.また SOHLA-1の 打ち上げに伴い,大阪府立大学に創設される管制 室で本衛星の運営を行うことから,国内の地上局 を使用することを考えると,国内の増田1局を地 上局として選定する.本衛星が通信で使用する地 上局の位置を以下に示す.

-≪増田1局≫ ー

北緯 30 度 33 分 7 秒 東経 131 度 1 分 2 秒

7.3.2. 通信可能時間の検討

本衛星の軌道は太陽同期準回帰軌道(高度 700 km,軌道傾斜角 98.4 deg)である.さらに増田1 局の通信可能仰角を 5~90 deg とし,軌道計算を 行う.本衛星は1日で地球を14.6 周回するが, 本衛星と増田1局と通信可能なのはその内4周で あり,その合計通信可能時間は 2072 秒(補足: 増田1局と本衛星間の1パスの通信における通信 可能時間は連続 360 秒が最短である)である.

7.3.3. ダウンリンクの伝送レート

ダウンリンクするミッションデータ量は 115.9 MBである.本衛星 S バンド局の通信可能時間は 7.3.2より約 2072 秒であるので伝送レートは最低 447 kbps,余裕をみて 500 kbps とする.この伝 送レートで1日に取得する放射線のデータ量を送 信する事ができる.

7.3.4. アップリンク伝送レート

伝送レートを 500 bps とする.

1 パスで送信できる最低のデータ量は 7.3.2 に ある 1 パスの最短通信可能時間より, 500 [bps]×360 [s] = 180000 [bit] = 22.0 [KB]である. この時, アップリンクできるデータ量は十分であ る.

7.3.5. 通信方式検討

本衛星で用いる搬送周波数帯は宇宙運用で使 われる S バンドを使用し,ダウンリンク:2045 MHz, アップリンク:2220 MHz とする.

ダウンリンクにおいて H.K.データのデータ量 はミッションデータの量と比べて小さいため、ミ ッションデータと H.K.データをまとめて同じ回 線で伝送する.特にミッションデータの量は大き いので、変調方式には伝送効率、周波数利用率の 高い QPSK を採用する.アップリンクにおいても 送信データ量は小さいが、周波数利用率の面から ダウンリンクと同様に QPSK を採用する.

以上の結果より,確保する2つの本衛星-地上 局における通信回線を表 7-1 にまとめる.

表 7-1 通信回線

	Up link	Down link
周波数[MHz]	2220	2045
伝送レート[kbps]	0.5	500
通信距離[km]	$700 \sim 2563$	$700 \sim 2563$
変調方式	QPSK	QPSK

本衛星の姿勢制御では通信のために姿勢制御 を行うことは難しい.ゆえにアンテナは姿勢変更 を必要としない無指向性にする.アンテナには小 型で構造上有利なパッチアンテナを使用する.

搭載機器として S バンド送受信機(STRX), S バンドダイプレクサ(SDIP), S バンドカプラ (SCPL), S バンドアンテナ(SANT)を搭載する. ただし SDIP は STRX に内蔵されているとする.

図 7-1 に通信機器構成を示す. 通信搭載機器の 一覧は表 2-3 を参照とする.

図 7-1 Sバンド通信機器構成

7.4. Sバンド通信系回線計算

本衛星-地上局の通信についての回線計算結 果を表 7-2 示す.

回線マージンはダウンリンクで 11.0 dB, アッ プリンクで 59.7 dB である.よって S バンド通信 系は本衛星のミッションにおける要求を満たし, 実現可能である.

表 7-2 回線計算結果

高度	km	700	700
アンテナ間距離	km	2563.1	2563.1
搬送周波数	MHz	2045	2220
波長	km	1.467E-04	1.351E-04
仰角	degree	5	5
	送信側		
送信EIRP	dBW	-1	64
送信機出力	W	1	
送信機出力	dBW	0	
給電損失	dB	1	
送信アンテナ利得	dBi	0	
ポインティング損失	dB	0	
	通信空間		
電力分配損失	dB	0	0
自由空間損失		1.205E+16	1.420E+16
自由空間損失	dB	160.8	161.5
偏波損失	dB	0	0
大気吸収損失	dB	0	0
降雨損失	dB	0	0
各種損失	dB	0	0
	受信側		
受信G/T	dB	16.8	-28.8
アンテナプリアンプ利得	dB		
ポインティング損失	dB	0.5	0
受信アンテナ利得	dBi	45.4	0
給電損失	dB	0.3	1
システム雑音温度	K	600	600
システム雑音温度	dBK	27.8	27.8
受信C/No	dBHz	83.6	102.3
総合C/No	dBHz	83.6	102.3
要求Eb/No	dB	9.6	9.6
ハードウェア劣化量	dB	2.5	2.5
符号化利得	dB	0	0
ビットレート	bps	5000000	200
ビットレート	dBHz	57.0	23.0
変調損失	dB	3.5	3.5
要求C/No	dBHz	72.6	38.6
回線マージン	dB	11.0	63.7

8. データ処理系

8.1. データ処理系の概要

本衛星の中央制御ユニット(CCU)は、3 台の計 算機により構成され、テレメトリ/コマンド処理、 姿勢制御,電力制御、ミッションデータの記録等、 本衛星に関わる情報の大部分を処理する.

予期せぬ原因によって計算機の処理が停止した場合のために,常にプロセッサの動作状況を監視し,一定時間以上処理が停止した場合には再起動を行う.その際可能であれば,異常時のデータを SD メモリカードに保存し,ミッションデータと共に地上局に送信する.

8.2. 要求

<u>姿勢系</u>

各種センサの情報から姿勢の把握し, MTQ の 制御を行う. さらに機上で軌道計算を行い, 姿勢 モードの変更を行う.

<u>熱系</u>

衛星内部に設置された温度センサから温度デ ータを取得し,内部の温度が各機器の許容温度範 囲に収まるよう,ヒータを動作させる.また.場 合によってはセーフモードに移行する.

<u>通信系</u>

ー日分のデータを、4回に分けて地上に送信する.また、地上からの各機器に対する命令を、指 定された時間に実行する.

電力系

バッテリの残存容量を監視し、日照時に PPT 制御演算を行う.

<u>ミッション系</u>

放射線測定のデータが何らかの原因で送信で きない状況でも測定を続けるために,1日(高分 解能時103.8 MB,低分解能時2.1 MB,放射線耐久 試験10 MB,計115.9 MB)の測定データを保管 できる.

8.3. データ処理系の機能

HKテレメトリ処理/保存機能

テレメトリを収集し、3-4周毎に1つのファイル にまとめ、送信可能な状態にする.

ミッションデータ処理/保存機能

ミッション機器のテレメトリおよび, ミッショ ンデータの処理/保存を行う.

コマンド処理/自動化機能

地上局から送られてきたコマンドをデコード し,適切なタイミングで各機器に送信する. 本衛星が地上局の可視範囲内かどうかによらず, ミッションを行うので,ストアードコマンド処理 が不可欠であり,コマンドに従ってスケジュール を組み, GPS から得た時間を基準に各機器にコ マンドを送信する.

姿勢制御演算機能

太陽センサ,磁気センサ,ジャイロ,GPSからの データより,MTQに送る信号の姿勢制御演算を行 う.

電力状態監視機能

バッテリ電圧,バッテリ放電深度等を監視し, 衛星が電力的に危険であると判断された場合に は,衛星の生存に不必要な機器の電源を切る.

PPT 制御演算機能

PCU から送られた電流値からPPT 制御に必要な演算を行い,値をPCU に渡す.各機器との インターフェイス機能各機器とのI/F 機能を有する.

8.4. 機器の選定

8.4.1. 計算機

計算機には、開発期間の短縮、および開発費の 削減を見込んで民生品を用いる.設計は、計算機 とインターフェイス部を統一し易いことから、サ イズが統一されている PC/104 規格に準じて行う. 計算機の主要部分には、十分な計算能力が得られ、A/D変換が可能である、H8SXを採用する.

計算機のRAMの容量を24KB にする. これは, 1 秒間で得られる放射線計測のデータを,一時的 に RAM 上に保存できるサイズである. また, RAM は三重多数決冗長とすることにより,放射 線によるエラーが起きた場合に,本衛星がクリテ ィカルな事態に陥ることを回避する.

表 8-1 H8SX 仕様

名称	H8SX
動作電圧 [V]	4.5 to 5.5
クロック周波数 [MHz]	40
ROM [KB]	512
RAM [KB]	24
A/D 分解能 [bit]	10
チャンネル[ch]	16
ウオッチドッグタイマ [ch]	1
/0 ポート [本]	95
動作周囲温度 [℃]	-45 to 105
定格出力電力 [mA]	50

8.4.2. 記録装置

本衛星では, 駆動部を持ち気密が必要である HDD を避け, SD メモリカードを用いることにす る.

SD メモリカードには、ミッションデータの他、 テレメトリおよびコマンドが保存される.このデ ータ量は非常に大きく、三重多数決は現実的でな いため行わず、ソフトウェア的に放射線対策を行 う.

表 8-2 SD メモリカード仕様

	SD メモリカード
動作電圧 [V]	2.7 to 3.6
消費電力[mW]	< 360
実質容量[MB]	約 1870
最大転送レート [MB/s]	約 20
動作周囲温度 [℃]	-25 to 85

8.5. 放射線対策

8.5.1. 放射線による障害

民生部品は,低コスト・高性能であるが,軌道 上で使用するには耐放射線性や耐環境性(振動, 熱等)に問題がある.特に軌道上では様々な放射 線(太陽系外から飛来する重イオン,太陽から放 出される陽子,地球磁場に捕捉されている陽子) が存在し,これらが電子部品に入射すると(1) ~(3)の誤動作や永久損傷を引き起こすため, 何らかの対策を採用する必要がある.

(1) SEU (Single Event Upset)

1 個の陽子,重イオンの入射により発生.メモ リの"1""0"という bit データが反転する一時的 誤動作を引き起こす.

(2) SEL (Single Event Latch up)

1 個の陽子,重イオンの入射により発生.部品 内部でラッチアップと呼ばれる過電流を発生さ せ,部品の永久焼損等を引き起こす.

(3) TID (Total Ionizing Dose)

電子・陽子等の照射の影響が蓄積して消費電流 が増加し,最終的に機能異常を引き起こす^[3].

8.5.2. シングルイベント対策

まず, SEU (Single Event Upset) に関しては, ビット反転によるエラーを回避するために, CCU のメモリ部分に三重多数決を,また SD メモリカ ードに三分割同時記録方式を,それぞれ採用する.

次に,SEL (Single Event Latch up) に関して は、システムが異常な電流を検知したときにリセ ットする自動シャットダウン機構を、CCU 及び SD メモリカードにおいて採用する.

8.5.3. トータルドーズ対策

CCU 及び SD メモリカードの側面を,厚さ 20mmのアルミ板で防御する.これにより,本衛 星が常に太陽活動極大期下にあると仮定しても, 総放射線量は約[3Gy/[Si]/year]まで軽減される.

9. 参考資料

[1]茂原正道,鳥山芳夫 "衛星設計入門"培風 館,2002

- [2] 冨田信之"宇宙システム入門"倍風館,1994
- [3]恩藤忠則/丸橋克英"宇宙環境科学"オーム社

[4]T.P.O'Brien, M.D.Looper, J.B.Blake

Quantification of relativistic electron

microburst losses during the GEMSTroms

[5]高木俊治,中村尚司,河野穀,塩野登,林克己,槙野

文命 「あけぼの」衛星による放射線帯粒子と 半導体素子の損傷測定

[6]加藤貞幸 "放射線観測" 培風館

[7]細川繁,升本喜就,竹沢進,羽地和彦 小型衛 星の1軸磁気トルカによるダンピング制御と重力 傾度姿勢安定システム

[8]小型宇宙天文台「完全星覇」衛星設計解析書