第14回衛星設計コンテスト 設計の部

## 小型宇宙天文台『完全星霸』

## 衛星設計解析書

大阪府立大学 工学部 航空宇宙工学科 古川琢也 小泉拓郎 久保良介 吉村一幸 山口智宏 本田 徹 福西瑛司 波々伯部広隆 江藤 力 和田貴行

## §1. ミッション部

## 1. ミッション概要

## 1.1. ミッションの目的と手段

本衛星の目的は『小型宇宙天文台の実現』である(図 1-1)。



## 図 1-1 『完全星覇』外観

宇宙からの天体観測といえば、まずハッブル宇 宙望遠鏡が連想されると思われるが、ハッブルを はじめとする数ある宇宙望遠鏡は科学者の学術 的利用のための大型衛星である。一方で、地上の 天文台に関しては、学術的利用を目的とした巨大 な天文台も存在するが、一般の人々を対象とした 小型の天文台も数多く存在する。これらの一般開 放された天文台は多くの天文ファンや子供の教 育に利用されている。

以上をふまえると、宇宙望遠鏡の中にもこのよ うな天文ファンを喜ばせ、子供の教育に利用され るものが存在すべきである。そこで、我々は本衛 星を利用し以下の方法でこれを実現する。

- ① 『実写版天球儀ソフト』
- ② 『実写版プラネタリウム』
- 『どこでも管制室』

①は全天の実写データを備えた、ソフトウェア 『実写版天球儀ソフト』を製作するというもので ある。このソフトは6等星までが観測できる"眼 視モード"と12等星以上が観測できる"望遠鏡 モード"の2種類を備える。さらにズーム機能を 搭載することにより天球のある部分を拡大して 表示することが可能となる。この他、星座絵・星 図等を表示する機能が搭載される。

このソフトは実写で隈なく全天を観測できる ことが、非常に重要である。地上でも同じものを 作ることが可能に感じられるが、均質な画像で全 天を短い期間に撮影することは実際には困難で ある。

②は①を製作する際に得られる、実写データを 利用することで、プロジェクタタイプのプラネタ リウムに上映するというものである。

また、①のソフトウェアとプロジェクタを揃え ることで、簡易のプラネタリウムとすることも可 能である。

③はインターネット・アマチュア無線を介して、 地球上のあらゆる場所から、様々な人が衛星と通 信を行うというものである。特に重要な点は、ア マチュア無線を用い、誰もが衛星の運用を行える ということである。さらに、搭載したカメラを用 い自由に天体観測を行うことができる。このよう に『どこでも管制室』は設備さえあれば、個人で 衛星の運用の一部を体験することができ、また、 学校での教育活動の一環として、衛星が身近に感 じられる機会を提供できる。

## 1.2. ミッションの概要

本衛星はミッション期間を 2 年とし、高度 712[km]の太陽同期準回帰軌道 (回帰日数:8日) を周回する。この軌道は太陽の影響が毎周回同じ であるので、周期的に日陰側で天体撮影が可能と なり、光学的にも迷光の影響を避け、撮影時に CCD を熱的に一定の条件に揃える事ができる利 点がある。さらに、太陽の影響が毎周回同じであ るので、様々な解析が容易となり解析期間が短く でき、コストを下げるなどの利点もある。

星景撮影は、太陽の強い日差しを受けない日陰 時に行われ、ある1つの方向の画像(以降パネル と呼ぶ)を得てから次の撮影に入るまで、早くて も地球を3周回するとする。これは、日陰時に撮 影を行う際、バッテリの電力を大量に消費するた め、撮影後は充電期間が必要となるからである。

全天の分割撮影にはミッション期間の半分を 費やすとする。日陰時にある1つのパネルを撮影 する際、6等星以下が写る微小時間の露光と、12 等星以上が写る2秒程度の露光で各4枚以上撮影 する。

## 2. ミッション機器の概要

## 2.1. 機器の選定について

可視光の星景撮影は多くの天文ファンによっ て行われており、様々な機器が市場に出回り充実 している。このようなことを考慮すると、独自開 発の宇宙用機器を用いるよりも、民生品を流用す る方が機能・価格・時間という観点からも優れて いると判断できる。これらをふまえて『ミッショ ン機器は民生品の多用』をコンセプトとして機器 の選定を行う。ただし、宇宙環境に特有の放射線 やアウトガス等に対応するために改造や試験は 必要となる。

## 2.2. ミッション機器概要

ミッション機器の構成を図 2-1に示す。



図 2-1 ミッション機器の構成

## 2.3. 光学系設計

光学系を設計するにあたりいくつか留意すべ き点がある。

まず、主に星景写真を撮影するので、明るい光 学系とする必要がある。これにより、露光時間の 短縮を計る。また星景写真は背景の大半を黒色で 占めるので、ノイズの少ない CCD を選ぶ。

次に、製作するソフトウェアにズーム機能をつけるため、全天をできる限り多くの数に分割撮影し、CCD の画素数も最大限多くする。こうすることで、多少のズームをしても画像がモザイク状になることを防ぐ。

さらに、ミッション期間内に分割撮影を終える ことのできる、分割枚数と画角を選ぶ必要がある。 この画角は、望遠鏡の焦点距離と CCD チップの 大きさの 2 つに依存する。そこで、両者の関係か ら、大まかな焦点距離と CCD サイズを見積もり、 機器の選定を行う。

この際、隣り合うパネルを少し重ねて撮影する ことと、運用にゆとりを持たすことを考慮して、 4 周回に1パネルの撮影ができるものとし見積も る。また、全天の分割撮影には2年間あるミッシ ョン期間の半分を費やすものとする。

1 年間に地球を約 5000 周回するので、撮影枚 数が約 1200 枚となる。ここで、図 2-2 のような 半径Rの天球を考えると、1 パネルで撮影できる 面積  $\Delta$  Sは  $\Delta S = 4\pi R^2/1200$  である。CCDの形 状を正方形とすると、1 回の撮影でこの面積  $\Delta$  S を得るためには、5.9×5.9[deg]の画角が必要とな る。よって、図 2-3 の位置関係から、焦点距離f とCCDの一辺の長さ  $\delta$  は

 $\delta = f \times 2 \tan(5.9 \deg/2)$ 

を満たす。これをグラフに示すと 図 2-4 のよう になる。



図 2-2 天球と撮影面積



図 2-3 主レンズと CCD の配置



図 2-4 焦点距離fとCCD サイズδ

CCD の一辺の長さは 10~40[mm]が民生品と して妥当な大きさである。そのため、焦点距離は 100~400[mm]程度となる。よって望遠鏡は、民 生品の天体望遠鏡を利用するのではなく、カメラ 用レンズを利用することになる。

これらをふまえて、選定された機器を次節以降 で示す。

## 2.4. 望遠鏡

望遠鏡としてのレンズには、一眼レフ用交換レ ンズ(望遠)を用いる。選定されたレンズの外観 を図 2-5、仕様を表 2-1に示す。



図 2-5 一眼レフ用交換レンズ(望遠)

表 2-1 望遠レンズの仕様

| メーカー            | PENTAX             |  |  |
|-----------------|--------------------|--|--|
| 型番              | FA*300mmF2.8ED[IF] |  |  |
| 焦点距離 [mm]       | 300                |  |  |
| F值              | $2.8 \sim 32$      |  |  |
| レンズ構成 [群/枚]     | 7/10               |  |  |
| 画角 [deg]        | 8.2                |  |  |
| 最大絞り            | 32                 |  |  |
| 最大径 [mm]        | 123                |  |  |
| 全長 [mm]         | 245                |  |  |
| 重量(改造前 / 後) [g] | 2500/約 3500        |  |  |

このレンズの改造すべき箇所は、樹脂で形成さ れているケーシングである。これを取り去りアル ミ製とすることで、アウトガスのレンズへの付着 を防ぐ。そして、レンズはアルミ製のケーシング 内部にピントが∞となるようにすべて固定する。 また、フード部分もアルミ製として取り付けてお く。より優れた遮光の手段としてバッフルが考え られるが、大きさの制約のためフードを採用した。 これら、アルミ製のケーシング、フードの内部は 低反射の黒色塗装を施す。

また、これらの他に、絞りとカメラマウントに 一部改造を施して用いる。絞りは地球など明るい 対象を撮影する時の減光の手段となる。減光の手 段として ND フィルター等の挿入機構も考えられ るが、大きなスペースが必要となるので小型衛星 には適していない。

## 2.5. 冷却 CCD カメラ

まずノイズの少ない CCD が必要となるため、 冷却 CCD を用いることを前提とする。冷却 CCD にはモノクロとカラータイプが存在する。ここで はまず使用するタイプを考察する。ミッションの 目的からカラー写真が得られることが望ましい。 そのため、モノクロ CCD を用いフィルターワー クによりカラー化する方法か、カラーCCD を用 いる方法を採用する必要がある。前者はより細か な画像が得られる利点があるが、多くの時間を費 やす欠点もある。よって、撮影時間の短縮のため カラーCCD を用いることにする。

以上を踏まえて、選定した冷却CCDカメラユニ ットがBITRAN製のBS-43C(図 2-6)で

ある。



#### 図 2-6 冷却 CCD カメラユニット "BS-43C"

この製品の大きな特徴は、制御プログラムが公 開されていることである。そのため、プログラム 開発のみで、独自の機能をもたすことも可能とな る。また、アンチブルーミング機能(§1-3.3 参 照)が搭載されていることも特徴である。衛星に 搭載する都合上このユニットをまず、CCD部分と 制御部分に分ける改造を行う。そして、前者を冷 却CCDコンポーネント(CCC)、後者をミッショ ン機器制御ユニット(MCU)と定義する。

## 2.5.1. CCC

#### CCC の構成要素は

- ▷ CCD チップ
- ▶ フィルター
- ペルチェ素子
- ▶ CCC ケース
- ▶ ヒートパイプ

```
▶ 銅板
```



である。これらを組み立てた様子を 図 2-7 に示 す。



## <u>CCD チップ</u>

CCDチップの仕様を 表 2-2 に示す。このCCD のサイズは一般に 35mm判CCDと呼ばれ、焦点距 離 300[mm]のレンズと組み合わせることで、対角 8.2[deg]の画角が得られる。これは、一般に星空 を楽しむための双眼鏡で得られる視野に近いも のである。

表 2-2 CCD チップの仕様

| メーカー         | KODAK                |
|--------------|----------------------|
| 型番           | KAI-11000CM          |
| 画素数          | 1100 万画素             |
| ピクセル数        | $4008 \times 2672$   |
| ピクセルサイズ [μm] | $9 \times 9$         |
| チップサイズ [mm]  | $37.25 \times 25.70$ |
| 量子効率         | 図 2-8 に示す            |
| 暗電流倍増温度 [℃]  | 7                    |



図 2-8 KAI-11000CM の量子効率

## フィルター

図 2-8 を見ると分かるように、用いるCCDは波 長が 700[nm]以上の赤外域でも高い量子効率で 感光してしまう。これでは、本衛星の目的である 可視光による観測が妨げられる恐れがある。その ため、可視光のみを通すフィルターを用いる。そ の仕様を 表 2-3、フィルターの透過率を 図 2-9 に示す。



## <u>ペルチェ素子</u>

ペルチェ素子とは板状の素子で、片面を冷却し、 もう一方の面から放熱する機能を有する電熱素 子である。BS-43Cにもペルチェ素子が搭載され ているが、冷却性能が劣るため、他社のペルチェ 素子を用いる。このペルチェ素子の作用で、撮影 中はCCDを-35~-25[℃]に冷却する。表 2-4 にペ ルチェ素子の仕様を示す。

表 2-4 ペルチェ素子の仕様

| メーカー        | (株)フジタカ                   |
|-------------|---------------------------|
| 型番          | FPH1-12704M               |
| 大きさ [mm]    | $30 \times 30 \times 3.6$ |
| 最大温度差 [℃] ※ | 68.0                      |
| 最大電流 [A]    | 3.9                       |
| 最大電圧 [V]    | 15.7                      |

※放熱側が 27[℃]の時

## <u>CCC ケース</u>

CCC ケースとは CCC 全体を一体化させるアル ミ製の分厚い円筒状のケースのことである。これ には、CCD を放射線から守る働きと、ペルチェ 素子からの排熱を受け取る熱的な緩衝材として の働きがある。放射線対策として特に、太陽側を 厚さ 20[mm]のアルミ板としている。

また、上面は精密な削り出しにより、PENTAX のKマウントが取り付けられるようにする。レン ズとCCCとの結合にKマウントを用いる理由は、 カメラ用マウントは取り付けが簡単な上、光軸の ズレ・取り付けのガタが非常に少ないことである。 さらに、このマウントの他、ネジ等による補助的 な固定も併用する。

## ヒートパイプ

ヒートパイプとは液体の蒸発と凝縮の潜熱を 利用した閉ループの熱伝導デバイスで、小さな温 度差で大量の熱量を輸送することができる。この 素子で CCC ケースと衛星上部の放熱板を繋ぐこ とにより、ペルチェ素子からの排熱を宇宙空間へ 効率よく逃がすことが可能となる。また、放熱板 表面には OSR が用いられており、たとえ、太陽 側へ放熱板が向いてしまっても、CCD に過度な 熱が加わることはない。

#### 銅板

銅板は、図 2-7 に示すようにCCDチップとペル チェ素子の間に位置する 。CCDチップとペルチ ェ素子の面積はほぼ等しいが、形状が若干異なる。 そこで、この銅板をはさむことにより、CCDチッ プ背面を均等に冷却する。

#### 2.5.2. MCU

ミッション機器制御ユニット(MCU)は、 BS-43Cの制御部分をアルミ製のケースに入れる 等、対策を施し利用する。MCUの仕様を表 2-5 に示す。MCUでは主にCCDの制御と得られた画 像の形式の変換を行う。このほか、ペルチェ素子 の電流、電圧の制御機能、絞りの制御機能も組み 込む。またCCDとの間に過電流検出器を取り付け、 シングルイベントラッチアップ対策を行う。

## <u>アンチブルーミング機能</u>

CCD は 1 画素に蓄積できる電荷量をこえるような光子の入力があった際、ある方向に輝線が延びてしまうブルーミングという現象が起こる。観 賞用画像にこのブルーミングが発生していると 大変見苦しいものとなる。そこで許容電荷量を超 える前に入射光を遮断することでブルーミング を防ぐことができる。この機能をアンチブルーミ ング機能という。

## <u>ビニング機能</u>

複数の画素を1つの画素とみなす機能。これに より1ピクセルとみなせる面積が増加し感度が向 上する。しかし、モノクロ画像となり、解像度は 低下する。

| メーカー                | BITRAN                                         |  |
|---------------------|------------------------------------------------|--|
| 型番                  | BS-43C                                         |  |
| A/D 変換              | 16bit / 8bit                                   |  |
| アンチブルーミング機能         | あり                                             |  |
| 16Bit 画像転送速度        | 17.5 [秒]                                       |  |
| ビニング機能              | 4×4/8×8/16×16/32×32/<br>XV任音志可                 |  |
|                     | X1 江徑 0 ··1                                    |  |
| シャッター速度<br>(USB 使用) | 0.1 秒から 1 時間まで(0.1 秒刻み)                        |  |
| 通信コネクタ              | USB1.1                                         |  |
| 画像データ出力形式           | BMP / JPEG / GIF / RAW / TIFF<br>/ テキスト / バイナリ |  |
| 大きさ [mm]            | 50 	imes 70 	imes 100                          |  |
| 重量 [g] (改造後)        | 1000                                           |  |

表 2-5 MCU の仕様

## 3. ミッション運用

## 3.1. 全天の分割撮影

衛星が地球を数周回する間に1パネルを撮影し、 全天の分割撮影を行う。また、最短で3周回する 間に1パネルを撮影することが可能である。撮影 する方向は常に太陽と反対を向いて地球の公転 面から上下90°の方向とする(図 3-1)。これを2 年間続けることにより約1500分割された全天の 写真を得る。ただし、全天の分割撮影のみを続け た場合、1年間で終わらせることも可能である。



#### 図 3-1 撮影方向(分割撮影時)

分割撮影は、全天をより多くの数に分割するほ ど、より緻密な撮影が行える。よってできるだけ 効率のよい全天の分割法が必要となる。

全天の分割を考える際、カメラの画角を用いる と色々と困難がある。そのため半径Rの天球を考 え、それに内接する長方形のパネルを、張り詰め ていく方法をとる。また天球上の位置を示す際に は黄道座標系を用い、各パネルは黄経・黄緯方向 に並べることにする。



## 図 3-2 黄道座標系

## 3.1.1. ポインティング精度

あるパネルを撮影する際、所望の方向と実際の 衛星の方向が微小だがずれてしまう。これはポイ ンティング精度に起因する問題である。この対策 として、隣り合うパネルを少しずつ重ねて撮影を 行う。以下では、この重ねる量を考察する。

本衛星のポインティング精度は姿勢制御系の 要求から 0.1[deg]である。これに安全率 1.5 をと って、指向方向の最大誤差を $\delta \theta = 0.15$  [deg]と する。よって、パネル長さはカメラの画角から各 辺 $\delta \theta$ ずつ除いたものとなる。まず画角 $\alpha$ 、 $\beta$ は

黄経方向に  $\alpha = 4.58 - 0.15 \times 2 = 4.28$ [deg]

黄緯方向に  $\beta \equiv 6.86 - 0.15 \times 2 = 6.56$ [deg] となる。さらにパネルの各辺の長さは半径 R の球 に内接するので、

黄経方向に 
$$a = 2R \sin \frac{\alpha}{2}$$
  
黄緯方向に  $b = 2R \sin \frac{\beta}{2}$ 

となる。しかしこの時、図 3-3 のように、x軸、y軸回りのズレ $\delta a$ 、 $\delta b$ しか考えられていない。



## 図 3-3 x軸、y軸回りの変化量

そこで、z軸(光軸)回りのズレを考える。



図 3-4 z 軸回りの変化量

図 3-4 より、

$$\delta H = \frac{a}{2} \cos \delta \theta + \frac{b}{2} \sin \delta \theta - \frac{a}{2}$$
$$= R \left\{ \sin \frac{\alpha}{2} (\cos \delta \theta - 1) + \sin \frac{\beta}{2} \sin \delta \theta \right\}$$
$$\approx R \delta \theta \sin \frac{\beta}{2}$$
$$\delta W = \frac{a}{2} \sin \delta \theta + \frac{b}{2} - \frac{b}{2} \cos \delta \theta$$
$$= R \left\{ \sin \frac{a}{2} \sin \delta \theta + \sin \frac{\beta}{2} (1 - \cos \delta \theta) \right\}$$
$$\approx R \delta \theta \sin \frac{a}{2}$$

また、 $\delta a \approx R \delta \theta$ 、 $\delta b \approx R \delta \theta$ であるので、 $\mathbf{x} \cdot \mathbf{y}$ 軸回りと $\mathbf{z}$ 軸回りのずれる量の比は、

$$\frac{\partial W}{\partial a} = \sin \frac{\alpha}{2} \approx 4[\%]$$
$$\frac{\partial H}{\partial b} = \sin \frac{\beta}{2} \approx 6[\%]$$

これより、z 軸回りのズレは、安全率 1.5 に含ま れているとし、以下では考えない。

#### 3.1.2. 姿勢安定度

本衛星のミッションでは 12 等星以上の非常に

暗い天体も撮影するため、約2秒間の露光が必要 となる。そのため露光中に衛星が他の方向へ向い てしまうと、点に写るべき星像が線状となってし まう。得られる画像は地上でコンポジット処理 (§1-3.3 参照)をするので、ある程度は許容さ れるが、このようなことが生じないように高精度 の姿勢安定度を要求する。星像が点と見えるため には、CCDチップ上で、星像のブレを 0.05[mm] 以内に抑える必要がある。よって、望遠鏡の焦点 距離が 300[mm]であることを考慮すると、必要な 姿勢安定度が 0.01[deg/2sec]となる。

#### 3.1.3. 全天の分割法

パネルを簡単に効率よく張り詰める方法とし て、図 3-5のように黄道に平行な面で均等に区切 られた部分にパネルをそれと平行にかつ、黄経方 向に1周ずつ張り詰めていく方法がある。ここで、 黄道と平行に区切られた領域で、黄道を含む部分 を0段として黄道北極に向かうにつれて、1段目、 2段目、…n段目と呼ぶことにする。また、黄道北 極を単に北極、黄道南極を南極、さらに、これら を結ぶ直線を極軸と呼ぶことにする。



## 図 3-5 パネルの並べ方

この方法では、黄緯が高いときほど、黄経方向 に1周分張り詰めるパネル枚数は少なくなってい く。そのため、n段目とn+1 段目に張り詰められ るパネル枚数が異なり、図 3-6のように中心(衛 星の位置)から見ると、全天の写真には隙間があ いてしまう。



図 3-6 パネル間の隙間

そこで、この点を考慮した全天の分割法を以下 に示す。

まず、図 3-7 に示すように、n段パネルと外接 球の北側の接点 $T_{n,u}$ の黄緯座標を $\phi_{n,u}$ 南側の接 点 $T_{n,l}$ の黄緯座標を $\phi_{n,l}$ とし、極軸から $T_{n,l}$ までの 距離を $r_n$ 、黄道面から $T_{n,l}$ までの距離を $h_n$ と定義す る。



図 3-7 文字の定義(黄道面と垂直な断面)

図 3・6 の隙間を無くす方法として、帰納的な方 法をとる。これは 0 からn段目までが隙間なく配 置されていた時、n+1 段目のパネルの南側の点 Tn+1,1をTn,uよりも下げた位置に配置することで、 隙間をなくすというものである。この様子を 図 3・8 に示す。図 3・8 左側は黄道面と垂直な断面で 見たもので、n段目のパネルの南側の角が、球と 接している状態を表している。また、n段目パネ ルの角の上にn+1段目パネルの角が常に位置する わけではないので、この断面ではn+1段目パネル は球に接していない。n段目まで隙間なくパネル が敷き詰められているとき、n+1段目の南側の黄 緯座標をとりあえず、 φ n,uとして並べたものが左 側の図で、このままだと中心から見たときに、n 段目とn+1段目の間に隙間ができてしまう。そこ で、n+1 段目の南側の黄緯座標を、図 3-8 左側の 図で示している角度d φ だけ下げたところに配置 すれば、図 3-8 右側の図の様に、中心から見たと きの隙間を無くすことができる。



図 3-8 n+1 段目との隙間を無くす方法

次に、n段目とn+1段目に生じる隙間 dφが最
大で、どの程度の大きさになるかを考える。
図 3-9は図 3-8の左側の図を北極側から見た、黄
道面と水平な断面である。 n段目とn+1段目のパ
ネルに生じる隙間が最大となるのは、図 3-9のよ
うに、n+1段目のあるパネルの辺の垂直二等分線
上でn段目のパネルが天球と交わる場合である。



図 3-9 隙間が最大となる時 (黄道面と平行な断面)

そこで、この垂直二等分線を通り、黄道面に垂 直な断面を考える。黄道面からhn+1だけ北側の平 行な断面である図 3-9に示すように新たに、距離 ln+1を定義する。

図 3-8で $r_{n+1}$ を独立な変数とみなすと、 $\phi_{n+1,1}$ を南側に下げることは、 $r_{n+1}$ を大きくすることに等しく、これにともない、 $l_{n+1}$ 、 $h_{n+1}$ も変化する。よって、 $r_{n+1}$ を変化させていくことでd $\phi_{max}$ つまり n段目とn+1段目のパネルに生じる隙間の最大値も小さくなる。このようにして、隙間がなくなる $r_{n+1}$ を求める。

図 3-8、図 3-9の幾何学的関係から、

$$l_{n+1} = \sqrt{r_{n+1}^2 - \left(\frac{a}{2}\right)^2}$$
$$h_{n+1}^2 + r_{n+1}^2 = R^2$$

隙間がなくなる時、dφ<sub>max</sub>=0なので、

$$h_{n+1} = l_{n+1} \tan \phi_{n,u}$$

が成り立つ。これら3つの式を $\mathbf{r}_{n+1}$ について整理すると、

$$r_{n+1} = \sqrt{R^2 \cos^2 \phi_{n,u}} + \left(\frac{a}{2}\right)^2 \sin^2 \phi_{n,u}$$

が求まり、**n**+1段目の黄緯方向の位置 φ<sub>n+1</sub>が次の ように決まる。

$$\phi_{n+1,l} = \cos^{-1} \frac{r_{n+1}}{R}$$
$$\phi_{n+1,u} = \phi_{n+1,l} + \beta$$

次に、n+1段目に張り詰めるパネル枚数 $N_{n+1}$ を 求める。ここで、1つのパネルの極軸を中心とす る黄経方向のパネル間隔d $\theta_{n+1}$ を定義する。さら に、図  $3\cdot10$ のようにパネル長さaが切り取る円弧 の円周角をd $\theta'_{n+1}$ と定義する。



図 3-10 黄経方向の分割 (黄道面と平行な断面)

図 3-10より、d θ'n+1は次式で求まる。

$$d\theta_{n+1}' = 2\sin^{-1}\frac{a}{2r_{n+1}}$$

しかし、このd $\theta$ 'n+1をそのまま黄経方向のパネ ル間隔d $\theta$ n+1とすることは出来ない。それはパネ ル枚数Nn+1が自然数であることが考慮されてい ないためである。そこで、パネル枚数Nn+1は切り 上げを表す「<sup>]</sup>を用いて、

$$N_{n+1} = \left\lceil \frac{360^{\circ}}{d\theta'_{n+1}} \right\rceil$$
と表す。よって、d  $\theta_{n+1}$ は、

$$d\theta_{n+1} = \frac{360^{\circ}}{N_{n+1}}$$

となる。

※注 rn+1を求める際、パネル枚数Nが実数として扱われている。しかし、実数として扱っている時に生じる最大の隙間を無くすようにrn+1が計算されているため、最後にNを切り上げることで、現実には隙間が計算過程よりも小さくなり、問題はない。

最後に、0段目をパネルの中心が黄道面を通り、 かつ黄道面に関して北側と南側が対称となるよ うに定めた時のパネル枚数を表 3-1に示す。この 時全天の分割枚数は1577枚となり、3周回に1回の 撮影を2年間続けた時の総撮影回数3500の半分以 下であることが分かる。これは、光学系設計を行 ったときの前提条件『全天の分割撮影はミッショ ン期間の半分を費やす』を満たしている。

表 3-1 各段のパネル枚数

| 段        | 枚数 | $\phi$ [deg] | $\phi_{ m u}[ m deg]$ |
|----------|----|--------------|-----------------------|
| 0        | 85 | -3.28        | 3.28                  |
| 1        | 84 | 3.28         | 9.84                  |
| 2        | 83 | 9.83         | 16.39                 |
| 3        | 81 | 16.38        | 22.94                 |
| 4        | 78 | 22.92        | 29.48                 |
| <b>5</b> | 74 | 29.46        | 36.02                 |
| 6        | 69 | 35.99        | 42.55                 |
| 7        | 62 | 42.51        | 49.07                 |
| 8        | 56 | 49.03        | 55.59                 |
| 9        | 48 | 55.53        | 62.09                 |
| 10       | 40 | 62.01        | 68.57                 |
| 11       | 31 | 68.47        | 75.03                 |
| 12       | 22 | 74.88        | 81.44                 |
| 13       | 13 | 81.18        | 87.74                 |
| 14       | 5  | 86.89        | 93.45                 |

## 3.2. どこでも管制室

『どこでも管制室』とはアマチュア無線を用い、 あらゆる場所であらゆる人に衛星の運用を直接 体験する機会を与えるシステムである。アマチュ ア無線は世界中で多くの人に利用されているた め、それらの設備が『どこでも管制室』に利用可 能であり、また設備を新設することも比較的簡単 である。具体的な内容を次節に示す。

## 3.2.1. 『どこでも管制室』の全体像

『どこでも管制室』の目的は、多くの人に、衛 星の運用と天体観測を体験できる機会を提供す ることである。具体的には、インターネット及び 専用のソフトウェアを用いることで一般の人で も制限付きのテレメトリ/コマンドの送受信を行 うことを可能にする。特に、学校で『どこでも管 制室』の実演ができることは本衛星の大きな魅力 の一つである。

図 3·11 のようなシステムを構築し『どこでも管 制室』を実現する。



図 3-11 『どこでも管制室』の全体像

ここで、Sバンドを介して衛星の運用・管理を すべて行う設備が『メイン管制室 (MCR)』、アマ チュアバンド (以下Aバンドと記す)を介して制 限付きの運用を行える設備を『リミテッド管制室

(LCR)』と定義する。データ量の大きい画像デ ータはSバンドを用いてMCRで受信する。LCR ではコマンドの送信後、テレメトリのみ直接受信 し、画像データはインターネット経由でMCRの サーバーからダウンロードする形式をとる。

## 3.2.2. リミテッド管制室での運用

次に、より詳しいリミテッド管制室 (LCR) で

の衛星運用の流れを紹介する。先に、ソフトの機 能を図 3-12 に示す。

ソフトは、前節で述べたコマンド送信に関わる 機能の他、運用希望時間の予約申請、および得ら れたテレメトリ、画像データの閲覧機能を有する。 具体的な流れは以下の通りである。

- 『どこでも管制室』の利用を希望する者はソ フトの予約モードを用い、事前に希望する日 時を予約申請する。
- ② 予約が成立すれば、その日時に、ソフトと A バンドアンテナとをリンクさせた状態にし、 再度ソフトのコマンド送信モードで接続する。
- ③ その時の衛星の位置・可能な撮影条件などの データを MCR から取得し、観測方向・撮影 条件設定画面に移行する。
- ④ その画面で、自由に観測条件を設定し、その 内容を MCR にアップロードする。
- ⑤ MCR でコマンドを自動生成し、LCR に暗号 化されたコマンドパックとして送信する。
- ⑥ このコマンドパックを、通信可能なタイミン グにソフトを用いて受信待機中の衛星に送信 する。
- 衛星が一連の撮影作業を行う。
- ⑧ 衛星がSバンド局の通信可能範囲に入ると、
   MCR は画像の受信を始める。
- ⑨ LCR は、得られた画像を MCR からダウンロードし、一連の『どこでも管制室』を終了する。

①から⑨までの一連の流れの他、追加機能として、 このソフトを A バンドアンテナとリンクさせて おくことで、本衛星が通信可能範囲であればテレ メトリを自動で受信できるようになっており、得 られたテレメトリを、MCR へもアップロードす る。但し、コマンド同様このテレメトリも限定的 なものであり、得られるデータは衛星の姿勢や位 置など、瞬間的な状態に関するものに限る。

ソフト上では得られたデータから、衛星の姿勢 や位置はグラフィックを用いて視覚的に見るこ とができる。たとえ衛星が可視範囲外に移動して も、予想される姿勢・位置情報を表示するように する。この機能により、撮影などを行う際の様子 を楽しむことができる。



図 3-12 コマンド送信までの手順

ソフトを用いてこのような一連の手順を踏む ことで、多数の LCR が同時にコマンドを送信す る事態や、悪意のあるコマンドが送信される事態 を回避する。さらに、コマンド送信から画像を得 るまでには、短くて約 10 分、最長でも 90 分の待 ち時間となるように、予約が行われるようにし、 衛星に無駄な時間ができないように配慮する。

## 3.2.3. 『どこでモニタ』の利用法

さらにフリーソフトウェア『どこでモニタ』に より実現される内容を追記しておく。重要である のは本ソフトが前節の様に実際に衛星を運用す る時以外にも使えることである。

通信可能地域にあるすべての LCR は、本ソフ トを用いることで、定期的に送信されているテレ メトリの受信が可能となる。ここでいう、テレメ トリとは特に位置・姿勢データを指し、これを用 いてリアルタイムの衛星の状態をグラフィック としてモニタリングできる。そして、このデータ を多くのユーザーで共有できるよう、インターネ ットを介して MCR へのアップロードも行える。

ここまでは LCR に関して記していたが、LCR のような環境を所有していない人でも、インター ネットにさえ接続できれば本ソフトのモニタリ ング機能が利用できる。MCR では S バンドによ る、画像・テレメトリのデータ及び、LCR からア ップロードされる姿勢・位置データを保管・更新 し続けている。このデータベースに接続する(ソ フトを使用)ことで、過去の衛星の情報・撮影画 像から、最新の運用状況までを入手・閲覧できる。 特に重要な機能として、グラフィックを用い衛星 がコマンドを受けてから、撮影を終えるまでの、 衛星の周回の様子を視覚的にモニタリングでき ることがあげられる。

ここからは、運用上のアイデアとなるが、イン ターネットを用い撮影対象などの投票を行い、人 気ある対象に関しては定期的にその撮影を実現 させる。この時、事前に日時等を公表しておくこ とで、衛星直下にある LCR にテレメトリの受信・ アップロードに参加してもらい、それを共有する ことで、アマチュア無線設備のない人々でも、ソ フトのモニタリング機能により、リアルタイムに 撮影を楽しむことが可能となる。

このような運用により、より多くの人が少しで も衛星の運営に参加していることを実感し、宇宙 をより身近に感じる機会をつくることを目指す。

## 3.2.4. 後期運用

本衛星のメインミッションは星景の撮影であ るが、より明るい対象である地球や月を撮影でき るように望遠鏡に絞りを内蔵している。そこで、 全天の分割撮影が終了次第、衛星の後期運用とし て、明るい対象の撮影を始める。後期運用では、 『どこでも管制室』を主に行い、地球・星景のど ちらでも希望するものを撮影できるようにする。 ここで、本衛星の優れた光学系で地表を撮影した 場合の性能を表 3-2 に示しておく。

表 3-2 地表撮影時の性能

| 撮影範囲 [km] | $85\!	imes\!57$ |
|-----------|-----------------|
| 空間分解能 [m] | 21.4            |

## 3.3. 地上におけるデータ処理

全天分割撮影のためのある1パネルを撮影する 際には、6等星までを写す微少時間の露光と、12 等星以上を写す2秒間の露光を少なくとも各4回 ずつ行う。得られた画像はRAW形式で地上に送 信する。そして、すべてのパネル画像が均質にな るように現像を行う。

同じパネルを同条件で複数回撮影する理由は、 これらの複数枚の画像を地上で、コンポジット処 理(注1)を行うことでより滑らかで明暗がくっ きりとした画像へと加工するためである。

この他、画像処理としてダークフレーム減算処 理(注2)とフラットフィールド処理(注3)を行 うことでより画面全体を均質なものにすること ができる。これらの処理を行うために、打ち上げ 前に、フラットフィールドと色々な条件における ダークフレームの撮影を済ませておく必要があ る。

これらの画像処理が終わったパネルごとの写 真は既定の形状にトリミングした後、天球儀ソフ トの各部分に割り当てる。

以上で述べた、地上におけるデータ処理と分割 撮影は平行して行い、またソフト開発も同時に行 う。

(注1) コンポジット処理とは複数枚の写真の星 像位置合わせを行った後、加算平均することであ る。この時、コンポジット枚数を増やすことで、 よりよい画質を得られる。

(注2) ダークフレームとは暗電流ノイズのみが 写った写真(図 3-13)のことである。ダークフ レームを得るためにはCCDに光が当たらない状 態(蓋をする等)にし、撮影を行えばよい。また、 ダークフレームに現れるノイズはCCD温度、露光 時間、CCDの劣化に依存し、これらの環境がほぼ 同じであると、現れるノイズもほぼ同じとなる。 このダークフレームを目的の全天の分割画像か ら減算処理をすることで、ノイズの少ない画像が 得られる。

(注3) フラットフィールドとは望遠鏡に依存す る周辺減光を写し出した写真(図 3-13)のこと である。レンズの先端に半透明の白色板をおき、 一様な光線状態の下で撮影することで得られる。 得られたフラットフィールドにダークフレーム 減算処理を施すことで高画質なものとなる。この ようにして得られた、フラットフィールドを目的 とする全天の分割画像から減算処理を行うこと で、周辺減光の少ない画像が得られる。



## 図 3-13 ダークフレーム(左)と フラットフィールド(右)の例

## 3.4. 運用計画

まず、撮影回数の割り当てについて考える。ミ ッション期間の2年間に撮影可能な最大回数は約 3500回である。そのうち、全天分割撮影には約 1600回必要である。また、キルナ局・増田1局 からの衛星の可視範囲を示すと図 3-14のように なるので、『どこでも管制室』は少なくとも3周 回に1度は実施可能である。



よって、『どこでも管制室』は任意に実施回数 を選ぶことができる。ここでは、初期設定・メン テナンス等のその他の時間以外、すべてを『どこ でも管制室』に当てるとして、その割り当てを図 3-15 に示す。図 3-15 の割り当てでは単純計算で 『どこでも管制室』は1日当り約3回行われるこ とになる。



## 図 3-15 運用時間の割り当て



図 3-16 運用計画

打ち上げ後、各部の機器が正常に動作すること を確認し、撮影条件を決める作業に入る。この場 合、決定すべき撮影条件は主に、露光時間である。 ただし、CCDの冷却温度によるノイズの違いも確 認する。

露光時間は地上試験によりある程度決定して おくが、宇宙空間では光度が若干変わるので、「撮 影条件の決定」ではそれを修正する。求めるべき 露光時間は次の2つである。

・6等星以下の恒星が写る露光時間

・少なくとも12等星の恒星が写る露光時間

このようにして得られた撮影条件を、全天の分 割撮影のすべてに適用し、画質の均一化を図る。 全天の分割撮影は、日陰側に月が位置する時を 考慮して、月の光の影響がないパネルを撮影する ように運用計画を立てる。

地球や月等の明るい対象の撮影は絞りが必要 となるが、可動部である絞りは宇宙空間において 信頼性に欠ける。そのため、メインミッションの 全天分割撮影を終えた後に、先に述べたような明 るい対象の撮影を始めることにする。

## 4. バスシステムへの要求

ミッション系から各系への要求を 表 4-1 にまとめる。

表 4-1 各系への要求

| 要求する系  | 内容                                             |           |    |                |  |        |
|--------|------------------------------------------------|-----------|----|----------------|--|--------|
|        |                                                | CCD (撮影時) |    | -35~-25        |  |        |
| 執玄     | 許容<br>温度                                       | CCD       |    | $-50 \sim 70$  |  |        |
| 77.575 | 範囲<br>[℃]                                      | 望遠鏡       |    | -10~40         |  |        |
|        |                                                |           |    | MCU            |  | -10~40 |
| 姿勢系    | 姿勢安定度                                          |           | 0. | 01[deg / 2sec] |  |        |
| 構造系    | 光学系に与える振動を最小にする                                |           |    |                |  |        |
| 電力系    | 3周回に1パネルの撮影を可能とする                              |           |    |                |  |        |
| 通信系    | 1日当り 40 枚以上の画像を下ろせる<br>市販のアマチュア無線機器で LCR を構成可能 |           |    |                |  |        |
| データ系   | 40 枚以上の画像を保存できる                                |           |    |                |  |        |

## §2.バス部

## 1. バスシステムの概要

本節では、ミッションの目標を達成するため、 また、衛星を維持するために必要なバスシステム の概要について述べる。

## 1.1. 衛星を構成する系

本衛星は、ミッション系、構造系、熱系、姿勢 制御系、電力系、通信系、データ処理系から構成 される。図 1-1 に、システムブロック図を示す。



# 1.2. 衛星の基本形状

<衛星基本形状>

衛星基本形状は、衛星内部のスペースをより大 きく確保できる直方体とする。

太陽電池搭載方式は、発生電力がより大きく得 られるパネル展開方式とし、太陽電池パネルは、 電力収支の関係から4枚にする。図 1-2に、太陽 電池パネルの展開前と展開後の外観図を示す。

<衛星本体外形サイズ>

規定包絡域を最大限利用した大きさかつ、外部 搭載機器(結合リング、アンテナ)、展開式太陽 電池パネルのスペースを確保するため、衛星本体 のサイズは、470×470×400[mm]の直方体とする。 図 1-2(a)に衛星本体外形サイズを示す。 <衛星固定座標系>

図 1-2(a)に示すように、衛星固定座標の座標軸 を直方体型の本体表面パネルに直交するように とる。原点は正方形型の-Zパネル(下面)表面の中 心とする。 <太陽電池パネル>

太陽電池パネルサイズは、パネル展開前に衛星 の側面に保持でき、さらにヒンジ等の展開機構を 考慮した最大サイズの 470×380×7[mm]とする。 図 1-2 (b) に太陽電池パネルのサイズを示す。

パネル展開したときの角度は、Z軸に対して垂 直とする。





図 1-2 衛星基本形状

## 1.3. 軌道

本衛星の軌道は、太陽同期準回帰軌道を採用す る。理由としては、SOHLA-1(JAXA、大阪府立 大学が技術支援をして東大阪宇宙開発共同組合 が開発を進めている小型衛星)の採用している軌 道と同様の軌道であるために、実績と解析データ が豊富にあることと、太陽との位置関係が一定で あり、昼夜の時間も一定であるので電力を確保し やすく、ミッション計画もたてやすいことがあげ られる。また、本ミッションでは、使用するレン ズに見合ったバッフルを取り付けることができ ないため、レンズに太陽光が入射しない日陰時に 撮影する必要がある。この軌道では、日陰時から 展望できる星空が1年で1周することから太陽同 期準回帰軌道が本ミッションにおいて適当であ ると考える。

また、昼夜の時間の比率と撮影枚数の関係及び、 回帰軌道の関係から軌道高度は712[km]とする。

## 2. 構造系

## 2.1. 構造系への要求

構造系への要求を以下に示す。

## <u>基本機能</u>

本衛星の基本構造を形成し、すべてのミッショ ン期間を通じて搭載機器を安全に保持すること。

## <u>環境に対する耐性</u>

地上、打ち上げ時、軌道上での機械的、熱的、 放射線に対する耐性を有すること。

## <u>ロケットからのインターフェース</u>

ロケットからのインターフェース条件を満足 すること。

#### 剛性要求

本衛星の打ち上げ形態はH-IIAによるピギーバ ック形態のため、小型衛星用H-IIAユーザーズマ ニュアルに規定してある剛性要求を適用する。衛 星分離部を固定した状態での剛性要求(第1次固 有振動数)を表 2-1に示す。

表 2-1 剛性要求

|              | 機軸方向   | 機軸直交方向 |
|--------------|--------|--------|
| 第一次固有振動数[Hz] | 100 以上 | 50 以上  |

#### 機器取付けに関する配置要求

システム/サブシステムの機能を満足する搭載 機器の配置であること。

## 2.2. 構造設計

## 2.2.1. 構造様式

本衛星の構造様式は、図 2-1 に示すパネル4枚 を組み合わせた井桁型パネル構造とする。この構 造様式にした理由を以下に示す。

- パネルを組み合わせることによって、衛星の 剛性が高まるため。
- ・ 機器搭載面積が大きいため。
- 長細い形状の光学系機器を配置するスペースが、井桁中央部にあるため。



図 2-1 井桁型パネル構造

## 2.2.2. 構体構成要素

本衛星の構体材料には、比剛性が高いハニカム パネル(スキン: Al7075、コア: Al1/8-5052-0.01) を用いる。表 2-2 にハニカムパネルのパネル厚さ を示す。

| パネル     |         | 厚さ      |
|---------|---------|---------|
| 構造パネル   | スキン[mm] | 上下各 1   |
| (上面を除く) | コア[mm]  | 8       |
| 構造パネル   | スキン[mm] | 上下各 0.5 |
| (上面)    | コア[mm]  | 6       |
| 太陽電池パネル | スキン[mm] | 上下各 0.5 |
|         | コア[mm]  | 6       |

## 表 2-2 ハニカムパネルのパネル厚さ

#### 2.2.3. 搭載機器配置

以下に示す配置方針のもと、3次元モデルを用 いて、搭載機器の配置を行う。図 2-2に搭載機器 配置を示す。(図中の搭載機器の略語については、 付録 表 10-1 搭載機器管理表に示す)

## <u> 配置方針</u>

- ・ 搭載機器間と、パネルと機器の間は、基本的に 30[mm]のスペースを確保する。
- 搭載機器を取り外す際に、他の機器を取り外 すことのないようにする。
- ・ 衛星全体の質量バランスを考慮する。
- 井桁中央部は、ペルチェ素子から発生する熱の影響を避けるため、基本的に機器を搭載しない。
- リアクションホイールは、ホイール回転時に
   発生する振動が光学系機器に影響を及ぼさな
   いようにするため、井桁を構成する内部のパ
   ネルには搭載しない。



図 2-2 搭載機器配置

## ヒートパイプの配置

ペルチェ素子から生じる熱を放熱面(望遠鏡開 ロ側) へ輸送するために用いるヒートパイプの配 置を 図 2-3(a)に示す。また、図 2-3(b) に示すよ うに、固定具を用いてヒートパイプを固定する。



(a)ヒートパイプの配置 (b)ヒートパイプの固定図 2-3 ヒートパイプの配置

## 2.3. 構造解析

構造数学モデルを構築し、固有振動解析と静荷 重解析を行う。また、3次元モデルより衛星の質 量特性を求める。

## 2.3.1. 構造数学モデル

構造解析ソフト NASTRAN を用いて、構造数 学モデルを構築した。作業の効率化のため、モデ ルを以下に示す構築方針で簡略化した。

## <u>構造数学モデルの構築方針</u>

- 500g 未満の搭載機器は、省略する。
- ・ 搭載機器は質点とする。
- 構造パネルは、表 2-2 に示すハニカムパネル を平板同定してモデル化する。

図 2-4 に構造数学モデルの外観図、表 2-3 にモデ ルプロパティを示す。



図 2-4 構造数学モデル外観図

| 1 |
|---|
|   |

| 項目    | 数值       |
|-------|----------|
| 節点数   | 約 1100 個 |
| 要素数   | 約 1200 個 |
| 要素特性数 | 17 個     |

## 2.3.2. 固有振動解析

固有振動解析の結果として、表 2-4 に第一次固 有振動数、図 2-5 に各軸方向の一次振動モードの 図を示す。これより、本衛星の剛性は、表 2-4 に 示す剛性要求を満足することが分った。

#### 表 2-4 固有振動解析の結果

|         | 機軸方向     | 機軸直交方向  |
|---------|----------|---------|
| 一次固有振動数 | 145 [Hz] | 56 [Hz] |



#### 2.3.3. 静荷重解析

構造数学モデルを用いて、以下に示す設計荷重 による静荷重解析を行う。

## <u>設計荷重</u>

小型衛星用H-ⅡAユーザーズマニュアルに規定 してあるH-ⅡA打ち上げ時の準静的加速度に、安 全率 1.5 を掛けて、その値を設計荷重とした。設 計荷重を 表 2-5 に示す。

表 2-5 設計荷重

|      | 機軸方向 | 機軸直交方向          |
|------|------|-----------------|
| 設計荷重 | 9G   | $7.5\mathrm{G}$ |

## <u>解析結果</u>

表 2-5 に示す設計荷重が機軸方向、機軸直交方向 に衛星全体にかかる場合、衛星に発生する最大応 力σを求め、それから安全余裕MSを以下の式よ り求める。

$$MS = \frac{\sigma_{cr}}{\sigma} - 1$$

ここで*σ<sub>cr</sub>は、衛星パネル材料の許容応力で、*その値は、Al7075 の疲労破壊限度である 103[MPa]とする。

解析結果として、表 2-6 に衛星に発生する最大 応力と安全余裕を示す。表 2-6 より、安全余裕は 0以上であることが分かり、打ち上げ時に衛星に かかる荷重に耐えることがわかった。

表 2-6 強度解析結果

|                 | 機軸方向 | 機軸直交方向 |
|-----------------|------|--------|
| 最大発生応力<br>[MPa] | 17.1 | 16.0   |
| 安全余裕 MS         | 5.02 | 5.72   |

## 2.3.4. 質量特性解析

3次元モデルより、質量特性として質量、重心 位置、慣性能率、慣性乗積を求める。結果を表 2-7 に示す。ただし、座標系は、衛星固定座標系を用 いる。

| •• - •                          | ///             |                         |
|---------------------------------|-----------------|-------------------------|
| 項目                              | 記号              | 値                       |
| 質量[kg]                          | m               | 47.1                    |
| 重心位置                            | X <sub>G</sub>  | -0.776                  |
| 里心心直                            | $Y_{G}$         | 7.686                   |
| [mm]                            | $Z_{G}$         | 169.981                 |
| 慣性モーメント<br>[kg m <sup>2</sup> ] | Ixx             | 1.263                   |
|                                 | Iyy             | 1.279                   |
|                                 | $I_{ZZ}$        | 1.627                   |
| 慣性乗積<br>[kg m²]                 | I <sub>XY</sub> | $-1.425 	imes 10^{-2}$  |
|                                 | Ixz             | $1.901 	imes 10^{-2}$   |
|                                 | Izx             | $-9.420 \times 10^{-3}$ |

表 2-7 質量特性解析結果

## 2.4. 太陽電池パネル展開機構

#### 2.4.1. 要求事項

太陽電池パネル展開機構には展開前・展開後に パネルが固定されていること、そして確実に展開 が行えることが求められる。さらに、機体寸法・ 重量の制限により、省スペースで単純な機構であ ることが求められる。また、姿勢制御を考慮し、 ゆっくりとパネルが展開することが望まれる。

大型の衛星では展開に火薬を用いる場合があ るが、本衛星は小型衛星であるため火薬を使用す ると衛星に悪影響を及ぼすことが考えられる。

これらのことをふまえ、パネル展開機構の要求 事項を以下に示す。

- ① 機体、パネルに外的な損傷を与えない
- ② 確実なパネル固定(展開前・展開後)
- ③ 確実なリリース・展開
- 単純な機構
- ⑤ ゆっくりと展開する

#### 2.4.2. 展開方法と展開機構

前節を考慮し、パネル展開を 図 2-6 に示す流 れで行う。



図 2-6 パネル展開の流れ

このパネル展開方法を実現するために必要な、 展開機構の構成要素と、その役割を 表 2-8 に示 す。また、パネル展開機構の結合部を 図 2-7 に 示す。

| ŧ | 0-0         | パウル屈腿燃構の構成両妻し犯 | 生山 |
|---|-------------|----------------|----|
| 衣 | <u>4</u> -0 | ハイル皮囲筬囲り囲成安糸と仅 | 亡り |

| 構成要素    | 役割                  |
|---------|---------------------|
| テグス     | 展開前のパネル固定           |
| ヒータ     | パネルのリリース            |
| トルク付ヒンジ | パネルの結合<br>ゆっくりとした展開 |
| コイルばね   | パネル展開               |
| ラッチ機構   | 展開後のパネル固定           |

機構の単純さと確実性を考えてテグスを使用 するが、テグスを焼き切ることでアウトガスが発 生してしまう。この対策として、テグスは光学機 器から離れたところで焼き切ることにする。



図 2-7 パネル展開機構(結合部)

## 3. 熱系

## 3.1. 目的

熱設計の目的は、熱的に過酷な宇宙環境から衛 星の搭載機器を保護し、これらが正常に動作し続 ける温度環境を維持することである。

基本的には受動熱制御方式を適用する。なぜな ら本衛星は小型衛星で、電力的に厳しい環境にお かれるためである。

## 3.2. 要求条件

3.2.1. ミッション、サブシステム要求

最も熱的な要求が厳しいものはミッション機器のCCD素子である。CCDの許容温度範囲は他のコンポーネントと比べて非常に低い。この温度差を作り出すために前述(§1-2.5.1参照)のペルチェ素子を使用する。しかしペルチェ素子は大電力を消費する。これによりペルチェ素子が設置されるCCCケースには大きな熱量が与えられる。この熱を効率良く外に逃がすためにヒートパイプを使用し、放熱面である構体上面から逃がすことにする.

姿勢制御の精度を向上させるために衛星の慣 性乗積が小さいことが望まれる。そのために、バ ッテリ等の重量物が筐体の外側に配置され、外部 環境の影響を受けやすくなっている。

また、本衛星は太陽電池パネルが展開式となっているため、太陽電池パネルは熱的には独立に近い環境におかれる。

## 3.2.2. 外部熱環境

外部熱環境として太陽放射,アルベド,地球赤 外放射を考慮する。それらの値を表 3-1 に示す。

表 3-1 外部熱環境

| 太陽光強度 [W/m]   | 1364 |
|---------------|------|
| アルベド係数        | 0.30 |
| 地球赤外放射 [W/m²] | 237  |

## 3.3. 解析モデル

構造系が配置検討したものを参考に"Thermal Desktop"を用いて、熱解析モデルを作成する。

#### 3.3.1. コンポーネント

簡略化のため搭載するコンポーネントは、温度 条件が厳しいもの、発生熱量が大きいものを抜粋 してモデル化する。これらのコンポーネントは同 量の熱容量を持つアルミニウムの直方体として モデル化する。下の表 3・2 にモデル化したコン ポーネントを示す。CCDは直接モデル化せずにそ れを囲う金属(CCCケース)をモデル化する。この 際、CCCケースの許容温度範囲をペルチェ素子の 特性表より求める。具体的には冷却時のCCDの許 容温度範囲・35~・25 [℃]に、ペルチェ素子で発生 可能な温度差だけ足したものとする。これよりミ ッション遂行時のCCCケースの許容温度範囲が -10~10 [℃]と求まる。

表 3-2 コンポーネント(1個当たり)

| 機器            | 許容温度範囲 [℃]    | 機器発熱量[W] |
|---------------|---------------|----------|
| Ni-MH バッテリ    | $5 \sim 25$   | 10       |
| 中央制御ユニット      | $-15 \sim 55$ | 5.5      |
| 電力制御ユニット      | $-15 \sim 50$ | 4.5      |
| リアクションホイール    | $-20 \sim 70$ | 4        |
| ミッション機器制御ユニット | -10~40        | 5        |
| CCC ケース       | -10~10(注1)    | 10(注 2)  |

注1:ミッション遂行時 / 注2:発熱はペルチェ素子による。

#### 3.3.2. 熱制御素子

熱制御面として構体上面、側面、太陽電池パネ ルの裏面の表面特性を様々に変更させた。そして コンポーネントの温度が許容範囲に収まるよう にした。筐体内部は熱が偏らないように黒色塗装 で統一した。検討した熱制御素子を表 3-3 に示 す。αは太陽光吸収率を示し、εは赤外放射率を 示す。

表 3-3 熱制御素子

| 名称       | α    | ٤    |
|----------|------|------|
| OSR      | 0.08 | 0.80 |
| 白色塗装     | 0.21 | 0.80 |
| 黒色塗装     | 0.95 | 0.86 |
| アロジン処理   | 0.17 | 0.05 |
| アルミニウム表面 | 0.38 | 0.04 |

| カプトンテープ  | 0.30 | 0.64 |
|----------|------|------|
| ブラックカプトン | 0.85 | 0.78 |

試行錯誤の末、構体側面にはカプトンテープを 採用した。太陽電池パネルの裏面には経済性を考 慮し黒色塗装を採用した。太陽電池パネルの裏面 はアルベドの影響は小さいので ε の大きなもの を採用した. ヒートパイプの接続される構体上面 は放熱板としての機能を持たせるため、高い放熱 性能が要求される. よって、構体上面には OSR を採用した。OSR は高価であるが,劣化が小さく, 放熱性能が良い。

## 3.3.3. ヒートパイプ

今回、ペルチェ素子の発熱を効率的に外へ逃が すためヒートパイプを使用する。ヒートパイプは 作動流体が代替フロンのものを採用する.最大熱 輸送量を考慮に入れ、φ10[mm]のものを4本使 用するものとする。ヒートパイプは CCC ケース と構体上面パネルを接続する。

作成した熱解析モデルを図 3-1に示す。



図 3-1 熱解析モデル

## 3.4. 解析結果

解析結果を表 3-4にまとめる。

| 反称         | 解析結果 [℃] |      |
|------------|----------|------|
| 泊が         | 最低温度     | 最高温度 |
| 太陽電池パネル    | -60      | 59   |
| Ni-MH バッテリ | 10       | 23   |
| 中央制御ユニット   | 7        | 23   |
| 電力制御ユニット   | 15       | 32   |
| リアクションホイール | -        | 40   |
| (lower)    | 1        | 40   |
| リアクションホイール | 0        | 15   |
| (side)     | 0        | 10   |

表 3-4 解析結果

| 実験機器制御ユニット | 7  | 15 |
|------------|----|----|
| CCC ケース    | -8 | 3  |

これらの結果は十分に時間が経過したあとの 温度である。これによりモデル化したコンポーネ ントが許容温度範囲内に収まっていることが分 かる。

CCDの温度はペルチェ素子の特性表とCCCケ ースの温度から求めた。ペルチェ素子によって 25℃の温度差が作りだされるとし、これを図 3-2 に示す。この図によりCCDの温度が許容温度範囲 に入っていることが分かる。



## 4. 姿勢制御系

## 4.1. ミッションからの姿勢要求

本ミッションにおける姿勢に対する要求は以 下のとおりである。

- · 姿勢安定度 0.01[deg/2sec]
- ポインティング精度を可能な限り高精度 にする。
- ※ 姿勢安定度とは慣性空間上に衛星を固定さ せる場合の精度である。
- ※ ポインティング精度とは指向精度のことで あり、指定した方向に向けたときの精度であ る。

## 4.2. 姿勢制御方式

本衛星のミッションでは、高精度の姿勢精度を 満足する必要があり、またミッション時には姿勢 を慣性空間上に固定する必要がある。これらより、 姿勢制御方式として高精度の制御が可能な3軸制 御のゼロモーメンタム方式を採用する。

## 4.3. 姿勢センサ構成

本衛星では 表 4-1 の姿勢センサを用いて姿勢 を決定する。

| 名前     | 個数 | 主な使用目的   |
|--------|----|----------|
| スターセンサ | 2  | ミッション時   |
| ジャイロ   | 3  | ミッション時   |
| 太陽センサ  | 1  | ミッション時以外 |
| 磁気センサ  | 1  | ミッション時以外 |

表 4-1 姿勢センサの個数

ここで、主にミッション時に使用するスターセ ンサとジャイロに関しては以下のことが要求さ れる。

- ・ 高精度制御が可能
- ・ 搭載可能サイズである
- ・ 軽量である
- ・ 省電力である

## 4.3.1. 搭載スターセンサの選定

慣性座標系のクォータニオンを検出するため にスターセンサ(STS)を搭載する。STS はロー ル軸回りの精度が悪いため2個を直交させ配置す る。バッフルに関しては最初から搭載されている ものを選定する。これらを基に搭載可能サイズの 中で一番精度の高いものを選定する。

## 4.3.2. 搭載ジャイロの選定

ジャイロには機械式とレーザー式があるが、レ ーザージャイロのファイバオプティカルジャイ ロ (FOG)が一般に小型軽量で高精度であるので FOG を搭載する。

#### 4.3.3. 搭載太陽センサの選定

太陽センサは初期姿勢捕捉時に主に使用する ことと、ソーラーパネルの発生電力からも太陽方 向は捕捉できるので多少精度が悪くても良い。よ って、粗太陽センサを採用する。また、本衛星に 独自性を持たせるため、SOHLA-1 に搭載予定の FSS(Fudai Sun Sensor)を搭載することにする。 FSS は 2006 年 9 月現在、府大においてフライト モデルを開発中である。また、検出機構としては 2 ストリング方式を採用している。

#### 4.3.4. 搭載磁気センサの選定

地球からの地磁場を検出し、地球中心座標 を検出する。ミッション時には使用しないので多 少精度が悪くても良い。

#### 4.3.5. 搭載センサー覧

以上より、搭載するセンサは表 4-2 とした。

表 4-2 搭載センサの一覧

| 名前     | メーカー名                         | 機器名                                |
|--------|-------------------------------|------------------------------------|
| スターセンサ | VECTRONIC                     | Star Sensor<br>Type VST-41M        |
| ジャイロ   | Honeywell                     | GG1320<br>AN Digital<br>Laser Gyro |
| 太陽センサ  | 大阪府立大学<br>(SOHLA-1 に<br>搭載予定) | Fudai Sun<br>Sensor                |
| 磁気センサ  | 明星電気                          | FMS                                |

#### 各機器のスペック

図 4·1~図 4·3 に各センサの外観図を示す。また、 表 4·3~表 4·6 に、各センサのスペックを示す。



☑ 4-1 Star Sensor Type VST-41M

## 表 4-3 Star Sensor Type VST-41M のスペック

| 項目                    | 仕様             |
|-----------------------|----------------|
| 精度(x,y / z 軸)[arcsec] | 18 / 122       |
| 更新周期[Hz]              | $4 \sim 8$     |
| 視野[deg]               | $14 \times 14$ |



🗵 4-2 GG1320 AN Digital Laser Gyro

表 4-4 GG1320 AN Digital Laser Gyro

のスペック

| 項目                | 仕様     |
|-------------------|--------|
| 種類                | FOG    |
| バイアス安定性[deg/hour] | 0.0035 |
| ランダム誤差[deg/hour]  | 0.0035 |



図 4-3 FSS (BBM)

| 丰 | 1-5 | FSS |
|---|-----|-----|
| 衣 | 4-0 | GGT |

| 項目             | 仕様 |
|----------------|----|
| 計測精度(目標) [deg] | 1  |

| 表 | 4-6 | 磁気セン | サ |
|---|-----|------|---|
|   |     |      |   |

| 項目     | 仕様            |
|--------|---------------|
| バイアス精度 | 0.5%以下        |
| 直線性    | 0.0075%以下     |
| 周波数応答  | 500Hz以上(-3dB) |

## 4.4. 外乱トルクの見積もり

今回の衛星ではアームなどを使用しないので、 衛星にかかる外力として考慮に入れる項目は以 下の(ア)~(エ)の4つとし、1周回の間に衛星にか かる外力トルクを概算した。これらの理論式は以 下のものを使用した。

(ア) 重力傾斜トルク Mg

$$\begin{split} \mathbf{M}_{g} &= \frac{3\mu |\mathbf{I}_{z} - \mathbf{I}_{y}| \theta}{\mathbf{R}^{'3}} \\ \mu : 地球重力定数 (3.98613 \times 10^{5} [\mathrm{km}^{3} / \mathrm{s}^{2}]) \\ \mathbf{R}': 軌道高度+地球半径 (712 + 6378 [\mathrm{km}]) \\ \theta : オイラー角 (1[\mathrm{deg}]) \\ \mathbf{I}_{z} : z軸回りの慣性モーメン ト(1.627 [\mathrm{kgm}^{2}]) \\ \mathbf{I}_{y} : y軸回りの慣性モーメン ト(1.279 [\mathrm{kgm}^{2}]) \end{split}$$

(イ) 太陽放射圧トルク Msp

- $M_{sp} = PAL(1+q)cos(i)$ 
  - P:輻射圧(4.617×10<sup>-6</sup>[N/m<sup>2</sup>])
  - A:表面積(0.47×0.38×4+0.47×0.47[m<sup>2</sup>])
  - L: 圧力中心と質量中心間距離(0.2[m])
  - q:表面反射率(0.6)
  - i:太陽入射角(0[deg])
- (ウ) 地磁気トルク Mm
  - M<sub>m</sub> = DB×10<sup>-7</sup> D:地磁気ダイポール・モーメント (1000[pole・cm])
    - B:地磁場ベクトル[gauss]

$$B = \frac{2NI}{r^3}$$

M :(8×10<sup>25</sup>[emu])

- r:cmで表した地球中心と
  - 衛星間距離((712+6378)×10<sup>5</sup>[cm])
- (エ) 空力トルク Ma

 $M_a = \sum F \sum L$   $F = 0.5(\rho C_d A V^2)$   $\rho$ : 大気密度 (1.11166×10<sup>-9</sup>[kg/m<sup>3</sup>])  $C_d$ : 空力係数 (2.5) A:表面積 (0.47×0.38×4+0.47×0.47[m<sup>2</sup>]) V:衛星速度 (7504.8[m/s]) L:重心から各面までのモーメント腕長 (0.2[m])

(ア)~(エ)の結果を表 4-7 に示す。

| 表 | 4-7        | 外乱の結果 |  |
|---|------------|-------|--|
| 2 | - <b>T</b> |       |  |

| 項目           | 値                      |
|--------------|------------------------|
| $M_g[Nm]$    | $2.038 \times 10^{-5}$ |
| $M_{sp}[Nm]$ | $5.182 \times 10^{-7}$ |
| $M_m[Nm]$    | $4.489 \times 10^{-5}$ |
| $M_a[Nm]$    | $1.949 \times 10^{-6}$ |
| 合計[Nm]       | $6.774 \times 10^{-5}$ |
| Hw[Nms]      | 0.4024                 |

## 4.5. 搭載アクチュエータ

本衛星では 表 4-8 に示すアクチュエータを用 いて姿勢制御を行う。

表 4-8 アクチュエータの個数

| 名前         | 個数 |
|------------|----|
| リアクションホイール | 4  |
| 磁気トルカ      | 3  |

ここで、磁気トルカ(MTQ)はリアクションホイ ールのアンローディングに使用する。また、リア クションホイールは通常3個を使用し、残りの1 個は故障が生じた場合の冗長系とする。

## <u>搭載ホイールのサイジング</u>

表 4-7 より外乱トルクが全て同方向に作用する 最悪ケースを想定した場合、1 周回で蓄積される 角運動量はHw=0.4024 [Nms]と算出できる。こ こで、リアクションホイールの作動は最低でも1 周回に1回は行うので、搭載されるリアクション ホイールは1周回分の外力を打ち消すことができ る角運動量が要求される。これより、マージンを 約2倍にとった場合のリアクションホイールの必 要な最大蓄積角運動量はHw=0.1[Nms] 以上と する。ここで、搭載リアクションホイールの選定 基準は以下のものとする。

- 必要角運動量: 0.1[Nms] 以上
- 消費電力を満たす

- ・
   ・
   質量要求を満たす
- ・ サイズの要求を満たす

これらの条件をもとに、表 4-9の機器を搭載す ることに決定した。また、リアクションホイール の外観図を 図 4-4 に、スペックを 表 4-10 に示 す。

表 4-9 搭載機器

| 名前             | メーカー名     | 機器名                           |
|----------------|-----------|-------------------------------|
| 磁気トルカ          | 大阪府立大学    | F-MTQ                         |
| リアクション<br>ホイール | VECTRONIC | Reaction Wheel<br>Type RW- 01 |



☑ 4-4 Reaction Wheel Type RW-01

## 表 4-10 Reaction Wheel Type RW-01

のスペック

| 項目            | 仕様                    |
|---------------|-----------------------|
| 慣性モーメント[kgm²] | $2.12 \times 10^{-3}$ |
| 最大回転数[rpm]    | 5000                  |
| 最大発生トルク[Nm]   | $20 	imes 10^{-3}$    |
| 最大蓄積角運動量[Nms] | 1                     |

## <u>MTQ のサイジング</u>

## **MTQ**の動作原理

MTQ の構造は高等磁率材料にコイルを巻 く、有芯ソレノイドである。コイルに電流を 流しそれによって生じた磁場と、地球磁場と の干渉による磁気トルクによりアンローデ ィングを行う。

衛星が投入される軌道高度(712[km])の地 球磁場は既知であるので、外乱の大きさを見 積もることで必要な磁気モーメントを求め

## ることができる。

ここで、1 周回で蓄積する最大の外乱トル クは 6.774×10<sup>-5</sup>[Nm]であるので、これをア ンローディングすることを考える。このとき の条件を以下に示す。

- MTQは2秒で1回駆動
- (1秒起動し1秒待機する)
- ・最大駆動回数を100回とする

上の条件より、アンローディング時間は長くと も5分以内となる。

これより、MTQのトルクは M<sub>max</sub>=338.7 [A m] なので、これを 100 回の駆動でアンローディング を行えばよい。よって M=338.7/100≒3.387 [A m]と決定できる。

ここで、安全率を少しとり、M=3.5[A m]する。

## **MTQ**の性能要求

MTQ の発生する磁気モーメントは以下の式で 与えられる。

$$M = \mathrm{BV}\frac{1}{\mu_0} \tag{3-1}$$

ここで、コアの実効透磁率は

$$\mu_{\rm eff} = \left(\frac{1}{\mu_{\rm a}} + \frac{\ln(\mathrm{L_{core}}/\mathrm{D_{core}})}{(\mathrm{L_{core}}/\mathrm{D_{core}})^2}\right)^{-1} \quad (3-2)$$

また、磁束密度 B は

$$B = \mu_0 \cdot \mu_{eff} \cdot n \cdot I \cdot L_{core}^{-1} \qquad (3-3)$$

以上を用いてスペックを表 4-11 のように決定 した。

## 4.6. ミッションへの要求

過去の衛星を参考にするとポインティング 精度は 0.05deg 程度まで実現可能である。ここ で、マージンを 2 倍にとり実現可能なポインテ ィング精度を 0.1deg とする。本衛星に搭載予 定のセンサは高精度であるのでこれを満たす ものと見なし、ミッション系への要求を以下の ものとする。

・ ポインティング精度: 0.1 [deg]

#### 表 4-11 MTQ のスペック

| 項目                           | 仕様                        |
|------------------------------|---------------------------|
| 質量 [kg]                      | 1.5                       |
| 寸法 [mm]                      | $200 \times 70 \times 35$ |
| 消費電力 [W]                     | 2                         |
| 使用電流 I[A]                    | 0.4                       |
| コアの実効透磁率 µeff                | 36.73                     |
| コアの初期透磁率 µa                  | 10000                     |
| コアの長さ L <sub>core</sub> [m]  | 0.18                      |
| コアの直径 D <sub>core</sub> [m]  | 0.02                      |
| ワイヤの長さ L <sub>coil</sub> [m] | 37.7                      |
| ワイヤの直径 D <sub>coil</sub> [m] | 0.0003                    |
| ワイヤの材質                       | 銅                         |
| コアの材質                        | 45 パーマロイ                  |
| 巻き数 n[回]                     | 758                       |
| 発生トルク M[A m <sup>2</sup> ]   | 3.5                       |

## 4.7. モード解析

姿勢系のモードを以下に示す。また表 4-12 に 各モードの使用機器を、図 4-5 には各モードの移 行について示す。

## <u>スタンバイモード</u>

軌道投入時や不具合のために中央制御ユニッ ト(CCU)の電源が落ちたときのモードで、初期 モードへ移行する。CCU を復帰させるためのモ ードなので姿勢系の各機器の電源は OFF になっ ている。

#### <u>初期モード</u>

CCU の電源が回復または起動した後に、FSS で太陽方向を検知し、衛星を太陽方向に向け電力 を確保するモード。

パネル展開前なら、まずリアクションホイール を用いて衛星にスピンを与え安定させ、その後に パネル展開を行う。

## <u>待機モード</u>

本衛星の運用に必要な十分の電力を確保した ときや、撮影などのミッションを行っていないと きの定常モード。ここから、撮影モードなどのミ ッションモードに移行していく。特に大きなポイ ンティング精度は必要としていないのでスター センサは使用しない。

#### <u>セーフモード</u>

姿勢制御を行うにあたってどこかに不具合が 生じたときに移行するモード。衛星のZ軸方向に スピンを与え姿勢制御を行い、最低限の電力を確 保する。また、FSSとFMSの姿勢データのみを 入手し、地上にて対策を練る。

#### <u>撮影モード</u>

全天撮影を行うときのモード。消費電力の大き いスターセンサを2個使用し本衛星の最大のポイ ンティング精度で星を捉えるモード。

## <u> どこでもモード</u>

『どこでも管制室』時のモード。設定された時 間内に使用者からのコマンドを受け取り特定の 方向を撮影するモード。使用方法の不備で本衛星 が危機に陥ったときにセーフモードに移行し、運 営者が問題を解決する。

#### <u>後期運用モード</u>

主に地球を撮影するのが目的のモード。地球方 向を向くので上面のスターセンサは使用できな い。

#### <u>補正モード</u>

姿勢系、光学系のアライメントのズレを計算し、 それを補正するモード。補正を定期的に行うこと で高精度の姿勢制御を目指す。

## <u>アンローディングモード</u>

MTQ を用いてリアクションホイールのトルク を抜くためのモード。これを行うことによってリ アクションホイールのリセットをする。

#### 表 4-12 各姿勢モードにおける使用機器

| モード名      | STS | FOG | FSS | FMS | RW | MTQ |
|-----------|-----|-----|-----|-----|----|-----|
| スタンバ<br>イ | 0   | 0   | 0   | 0   | 0  | 0   |
| 初期        | 0   | 3   | 1   | 0   | 3  | 0   |
| 待機        | 0   | 3   | 0   | 1   | 3  | 0   |
| セーフ       | 0   | 0   | 1   | 1   | 1  | 0   |
| 撮影        | 2   | 3   | 0   | 1   | 3  | 0   |
| どこでも      | 2   | 3   | 0   | 1   | 3  | 0   |
| 後期運用      | 2   | 3   | 0   | 1   | 3  | 0   |
| 補正        | 任意  | 任意  | 任意  | 任意  | 任意 | 任意  |
| アンロー      | 0   | 3   | 0   | 1   | 3  | 3   |



注:記板と判断された場合はビーノモートに移行 注1:危機の状態や対策法によって各モードに移行 注2:不意に電源が落ちた場合はスタノバイモードに移行

## 5. 電力系

## 5.1. 電力系の構成

本衛星の電力系のシステムブロック図を 図 5-1 に示す。また、本章で使用する記号の意味と パラメータについて表 5-1 に示す。

太陽電池パネル(SAP)で発生された電力は、 電力制御ユニット(PCU)内の Switching regulatorを通り日照時には、各電力利用機器(負 荷)へ電力を供給しつつ、余剰電力をバッテリへ 充電する。日陰時には、バッテリより負荷へ必要 な電力を供給する。

太陽電池セルは、4 面の展開パネルと、下面パネルに貼り付けられる。太陽電池セルの概要を表 5-2 に示す。

バッテリは、日陰時に各負荷へ電力を供給する ために必要である。特に、本衛星でのミッション は日陰時に最大電力を使用するため、高い性能が バッテリに要求される。バッテリの概要を表 5-2 に示す。

PCU の主な役割は 3 つある。太陽電池セルの 動作電圧を変化させる「スウィッチング機能」、 CCU から各機器の ON-OFF コマンドを受信し, それに応じた機器を ON-OFF する「ディスクリ ートコマンド機能」、そして BUS 電圧を二次電圧

図 4-5 各モードの移行について

に下げる「直流電圧変換機能」である。

電力の一部は BUS 電圧のまま供給され、それ 以外は PCU 内の DC/DC converter により二次電 圧に落として供給される。

電力制御方式は、Peak Power Tracking 制御 (PPT 制御)を採用する。太陽電池セルは、温度 などの要因により、最適動作電圧が変動する。 Switching regulator により太陽電池セルの動作 電圧を刻々と変化させながら最適動作電圧で発 電を行う方法を PPT 制御という。また、中央制 御ユニット (CCU)から、設定する動作電圧が送 られる。最近では、JAXA 開発の 50kg 級小型高 機能衛星「µ-LabSat」でこの制御方式が採用さ れている。小型衛星でも PPT 制御により効率的 に発電することで比較的大きい電力が得られる。



図 5-1 電力システムブロック図

| 記号           | 定義                                   | 値     |
|--------------|--------------------------------------|-------|
| Р            | 標準発生電力 [W]                           | 161   |
| $P_c$        | 平均消費電力 [W]                           | ١     |
| $P_{BAT}$    | バッテリ充電電力 [W]                         | 1     |
| $\eta_{sw}$  | スイッチング効率                             | 0.85  |
| $\eta_{ppt}$ | PPT 追尾効率                             | 0.9   |
| $\eta_{BAT}$ | バッテリ充電効率                             | 0.9   |
| $X_{rad}$    | SA動作電力劣化率(2年)                        | 0.05  |
| Xradv        | SA 動作電圧劣化率(2年)                       | 0.016 |
| $V_d$        | 日照時バッテリ電圧 [V]                        | 36.5  |
| $V_e$        | 日陰時バッテリ電圧 [V]                        | 28.8  |
| $T_d$        | 日照時間 [hour]                          | 1.06  |
| $T_{e}$      | 日陰時間 [hour]                          | 0.59  |
| C            | バッテリ容量 [Ah]                          | 8.2   |
| DOD          | Depth of Discharge<br>(バッテリ放電深度) [%] |       |

表 5-1 電力系記号の意味と機器のパラメータ

表 5-2 電力系機器の概要

|         | 項目          | 値                  |  |
|---------|-------------|--------------------|--|
|         | メーカー        | SHARP              |  |
| 十四重沖セル  | 種類          | GaAs               |  |
| 太陽电他 ビル | 枚数          | 184枚 (23直列×8並列)    |  |
|         | サイズ[mm]     | $36.3 \times 76.2$ |  |
|         | 発電効率 [%]    | 約 26               |  |
|         | メーカー        | Panasonic          |  |
|         | 種類          | Ni-MH              |  |
| バッテリ    | バッテリセル<br>数 | 24 直列×1 並列         |  |
|         | 容量 [Ah]     | 8.2                |  |
|         | 電圧 [V]      | $28.8 \sim 36.5$   |  |

## 5.2. 電力系への要求

## 5.2.1. システム要求

システム要求を 表 5-3 に示す。ただし、φと は太陽電池パネルへの太陽光入射角度のことで ある(図 5-2 に定義する)。また、発電時φ=0 (±10) [deg]のときをノミナルと定義する。

| 項目          | 要求           |
|-------------|--------------|
| 軌道          | 太陽同期準回帰軌道    |
| 太陽入射角φ      | 0(最高)        |
| (発電時) [deg] | ±10(ワースト)    |
| 高度[km]      | 712          |
| 太陽電池        | パネル展開式       |
| 取り付け方法      | ハイル成用式       |
| パネル面積[mm]   | 470×380      |
| 次埶制御        | 3 軸制御        |
| 女力咖喱        | (ゼロモーメンタム方式) |
| 運用期間        | 最低2年         |

表 5-3 システム要求

## 5.2.2. 各系からの要求

3 周で電力収支が成立することが要求されてい る。また、各系からの電力要求を付録の表 10-1 に示す。さらに、ミッションの運用計画概要を表 5-4 に示す。ただし、電力解析の条件は最も厳し くなる場合を想定している。電力解析の都合上、 1 サイクルを撮影の行う周回からはじめている (電力系サイクル)。

| 周回          | 1(夜)        | 1(昼)                   | 2(夜)         | 2(昼)        | 3(夜)         | 3(昼)                   |
|-------------|-------------|------------------------|--------------|-------------|--------------|------------------------|
| miti<br>om系 | 撮影          | Pel                    | Pel          | Pel         | Pel          | Pel                    |
| 姿勢<br>系     | 定常          | 姿勢変<br>更 <sup>※1</sup> | 定常           | 定常          | 定常           | 姿勢変<br>更 <sup>*2</sup> |
| 通信<br>系     | SRX<br>HTRX | SRX<br>HTRX            | STRX<br>HTRX | SRX<br>HTRX | STRX<br>HTRX | SRX<br>HTRX            |

表 5-4 ミッション運用計画

注) Pel:ペルチェ素子 ON 他のミッション機器 OFF

SRX:Sバンド受信機 / STRX:Sバンド送受信機

※1 撮影方向からノミナル姿勢に変更

※2ノミナル姿勢から撮影方向に変更



図 5-2 太陽入射角 φ の定義

## 5.3. BUS 電圧

BUS 電圧が低いと、太陽電池セル、バッテリの 直列数は少なくてすむため、小型衛星では設計の 幅が広がる。しかし、本衛星は特にミッション時 に大電力を使用するため、BUS 電圧が小さいと流 れる電流が大きくなり、ハーネス損失、バッテリ 内部抵抗の増加を促す。よって、無理のない電流 で運用できるように BUS 電圧を設定する必要が ある。

運用時の電力消費が最大になるのは、撮影ミッション時(1周目・夜)である。このとき、消費 電力は最大約81[W]必要である。この場合、最大 の電流がバッテリから流れる。最大電流値とBUS 電圧の関係を図5-3に示す。図より、BUS電圧 は20~40[V]の範囲内にする。また、各機器のコ ンポーネントの動作電圧をBUS電圧以下にする ように要求を出す。



図 5-3 BUS 電圧と最大電流の関係

## 5.4. 発生電力解析

太陽電池セルは、温度により発生電力が変化す る。これは、温度により太陽電池セルの電圧 - 電 流特性が変化するためである。本衛星の電力制御 では PPT 制御を採用しており、各温度において 最適動作電圧を追尾する。発生電力の計算は、最 適電圧値と電流値の温度特性を、温度に対して線 形に近似する方法を用いる。

## 5.4.1. 太陽電池セル貼り付け検討

太陽電池セルの貼り付け方法を検討する。表 5-3 の要求より、パネルサイズの最大値は 470× 380[mm]である。また、太陽電池セルは、パネル サイズ変更、バスバー取り付け、ハーネス取りま わし、パネル展開機構用のスペースなどを考慮し、 外縁と適度に間隔をあけて配置する。

ただし、§2-5.4.3節で決まる太陽電池セル枚数 より、パネル4面だけでは収まらない結果が出た ため、加えて衛星構体下面パネルにも貼り付ける。

太陽電池セル貼り付けパターンの検討結果を 図 5-4 に示す。



## 5.4.2. 太陽電池セル直列数の決定

太陽電池パネルで発生させた電力をバッテリ に蓄積するには太陽電池からの電圧がバッテリ の電圧より高い必要がある。本衛星利用のNi-MH バッテリ充電時の電圧は 36.0~36.5[V]である。 高いほうの値 36.5[V]よりも、常に発生電圧は高 い必要がある。

SA の発生電圧  $V_{SA}$ は、バッテリ電圧  $V_{BAT}$ について、以下の条件を満たす。

 $V_{SA} \ge V_{BAT} + V_{LOSS} = 38.0$  ・・・(1) (V<sub>LOSS</sub>は PCU での電圧減少で約 1.5[V]である) 直列数による V<sub>SA</sub>の値は以下の式で示せる。

 $V_{SA} = V_{mp} \times 直列数 \cdot \cdot \cdot (2)$ 

セル電圧は太陽電池セル温度に依存し、太陽電 池セル温度 Tsaと太陽電池セル最適動作電圧 Vmp の関係式を次式に示す。

 $V_{mp} = (1 - X_{radV}) (V_{mp}^{\&} + \alpha_{v} \Delta T_{SA}) \cdot \cdot \cdot (3)$ 

ただし、 $V_{mp}$ はセル特性基準温度 25[ $\mathbb{C}$ ]の値で あり、 $\alpha$ vは  $V_{mp}$ の温度特性である。

 $V_{mp}^{\&} = 2.3[V], \ \alpha_{V} = -6.5 \times 10^{-3}[V],$ 

ΔT<sub>sa</sub>=25[℃]からの温度差

これらの結果を使って、図 5-5 に直列数と発生電 力の関係を示す。熱系の太陽電池パネルの解析結 果表 3-4 より、パネルの温度範囲は-60~59[℃] である。この範囲で常に要求電圧を満たすことが 確認できるのは、直列数 20 以上のときである。 必要発生電力、セルの配置との関係より直列数を 23 に決定する。直列数 23 のとき、バッテリ電圧 と太陽電池発生電圧の差は最低でも約 7[V]あり、 たとえセルが単体で故障しても充電が可能であ る。ただし、セルがオープンになった場合にもス トリング全部がオープンにならないようにセル を接続する。



図 5-5 直列数と発生電圧の関係

#### 5.4.3. 発生電力の計算

数式(4)に、発生電力を導く式を示す。  $P = (1 - X_{rad})(a \times 23) \times (V_{mp} + \alpha_v \Delta T_{SA})$  $\times (I_{mp} + \alpha_I \Delta T_{SA}) \times \cos \phi$ ...(4)

a はストリング並列数を示す。23 は、太陽電池 セルの直列数である。

また、各係数は1年のうち、太陽入射エネルギ ーが最小になる7月、セル特性基準温度25[℃]の 値で、以下の通りとする。

$$\begin{cases} V_{mp} = 2.3[V] \\ \alpha_{v} = -6.5 \times 10^{-3}[V] \\ I_{mp} = 0.45[A] \\ \alpha_{I} = 0.2 \times 10^{-4}[A] \end{cases}$$

熱解析の結果より、パネルの最高温度は 59[ $\mathbb{C}$ ] であるので、 $\Delta T_{SA} = 35$  [ $\mathbb{C}$ ]、また日照時の充電中 に太陽入射角 $\phi$ の振れ幅が最大 10[deg]より、 $\phi$ = 10[deg]のときの最悪条件で発生電力を計算す る。太陽電池セル直列数が 23 のとき、発生電力 はストリング並列数による。

§ 2-5.6 節電力収支解析の結果、ストリング並 列数 8 の時、電力収支を満たす。ストリング並列 数a=8 のとき、太陽電池セルの総枚数は 184 枚で、 このときの発生電力、 P = 161 [W] である。これ を、標準発生電力とする。

## 5.5. バッテリの設計

バッテリの設計は、出力電圧、寿命、出力電流、 重量が、要求を満たすようにバッテリセルを選定 し、組み合わせなければならない。

図 5-6 に示す特性より、寿命2年(充放電 11000 サイクル)を満たす条件は、 Ni-MHの場合、 DOD<40%である。

バッテリ電圧は入出力電流(充放電特性)、DOD、 温度特性により変化する。とりわけ、充電時と放 電時ではバッテリ電圧には著しい違いがある。図 5-7、図 5-8 を参照。日照時と日陰時にはバッテ リ電圧の差が大きく、充電時にバッテリ電圧が高 く、放電時に低い傾向がある。両者の比が大きい と、DODが増加することが後述する数式(7)よ りわかる。

本衛星では、メモリ効果が少なく、「µ-LabSat」 など小型衛星での実績もある Ni-MH バッテリを 選択する。バッテリセルは、スクリーニングを行 った民生用の Ni-MH を使用する。

バッテリ搭載可能スペースとBUS電圧の関係 より、バッテリセル直列数は24(12本1セット ×2)とする。バッテリセルは、Panasonic製 HHR900Dを使用する。詳細データを表5-5に示 す。この電池は、高容量であり、要求されたDOD 以内に収めることができ、さらにミッション中に 使用する消費電流の変化によるバッテリ電圧変 化にも強い。

図 5-7、図 5-8より、充放電時のバッテリ電圧 を見積もる。

熱解析結果(表 3-4)より、日陰時の平均バッ テリ温度を 10[℃]、日照時の平均バッテリ温度を 23[℃]と仮定する。このとき、バッテリセル直列 数 24 より、バッテリ電圧はそれぞれ日陰時 28.8[V]、日照時 36.5[V]となる。

表 5-5 Panasonic HHR900D 性能表(セル1個)

| 公称電圧[] | 1.2      |                |
|--------|----------|----------------|
| 容量     | 平均 (参考値) | 9000           |
| [mAh]  | 定格 (min) | 8250           |
| 使用温度範囲 | 充電時      | $0 \sim 30$    |
| [°C]   | 放電時      | $^{-10}_{-65}$ |
| 大きさ    | 直径       | 33             |
| [mm]   | 総高       | 61             |
| 重量[g]  | 170      |                |



図 5-8 放電温度とバッテリ電圧

## 5.6. 電力収支解析

衛星の日陰時に必要な電力はすべてバッテリ より供給されなければならない。そのために、日 照時のバッテリへの充電電流量と日陰時の放電 電流量の関係が等しくなる必要がある。このため の解析が電力収支解析である。

## 5.6.1. 電力収支解析の前提条件

電力収支解析の前提条件を表 5-6 に示す。

また、ミッション系からの要求として、電力系 は地球周りの公転3周を1サイクルとして電力収 支を成立させる必要がある。

## 表 5-6 電力収支解析の前提条件

| 電力収支解析の前提条件            |        |  |  |  |
|------------------------|--------|--|--|--|
| 高度[km]                 | 700    |  |  |  |
| 周回時間[h]                | 1.647  |  |  |  |
| 日照時間[h]                | 1.059  |  |  |  |
| 日陰時間[h]                | 0.589  |  |  |  |
| 日陰時の割合[%]              | 35.7   |  |  |  |
| 日照時の割合[%]              | 64.3   |  |  |  |
| 1年間周回数[回]              | 5317.3 |  |  |  |
| リアクションホイール             | 0.05   |  |  |  |
| 最大電力での使用時間[h]          | 0.05   |  |  |  |
| 通信時間[h]                | 0.1    |  |  |  |
| 標準発電量[W]               | 161    |  |  |  |
| バッテリ容量[Ah]             | 8.2    |  |  |  |
| BUS 電圧(日照時) [V]        | 36.5   |  |  |  |
| BUS 電圧(日陰時)[V]         | 28.8   |  |  |  |
| 負荷への伝送効率 $\eta_{Line}$ | 0.9    |  |  |  |

## 5.6.2. 電力収支の計算方法

(日陰時)

日陰時の放電電流量 $B_e$ を計算する。添え字 e は日陰時を表す。

$$B_e = \frac{P_{ce}T_e}{\eta_{Line}V_e} \qquad \cdots \qquad (5)$$

(日照時)

日照時の充電電流量 $B_d$ を計算する。添え字 d は日照時を表す。

$$B_{d} = \frac{(\eta_{SW}\eta_{PPT}P - P_{cd})T_{d}\eta_{BAT}}{V_{d}} \cdot \cdot \cdot (6)$$

数式(5)(6)より、バッテリの放電深度 DOD を計算する。

$$DOD = \frac{1}{C} \left( \sum B_e - \sum B_d \right) \quad \cdot \quad \cdot \quad (7)$$

表 5-3 システム要求、表 5-4 ミッション運用 計画、表 5-6 電力収支解析の前提条件、および 数式 (7) を用いてDODの値を、昼夜の境界点(図 5-9 に定義)において計算する。



図 5-9 昼·夜の定義と DOD 計算点

#### 5.6.3. 電力収支解析結果

電力収支が最も厳しくなる条件は撮影時である。この条件における電力収支解析の結果、図 5-10を得た。

日陰時に撮影ミッションを行う周回では、DOD は最大約 22%まで落ち込み、3%電力収支を下回 る。その後の1周につき約 2%充電量が放電量を 上回り、3周回目でバッテリは満充電となる。

DODは3周以内で0%に戻り、電力系は3周を 1サイクルとするミッション運用に耐えられる。



## 6. 通信系

本衛星がミッションを達成するためには、大量 の画像データをSバンド通信系により確実に地上 局に送信しなくてはならない。また、『どこでも 管制室』を実現するためにはアマチュアバンド (以下Aバンドと記す)通信系が欠かせない存在 である。これらの点から通信系の役割は大変重要 になってくる。この章では本衛星のミッションが 通信系において実現可能であることを確認する。

## 6.1. 通信系の役割

Sバンド通信系の役割を以下に示す。

- 本衛星から地上局へのミッションデータ、 テレメトリのダウンリンク
- (2) 地上局から本衛星へのコマンドのアップ リンク
- Aバンド通信系の役割を以下に示す。
- 本衛星からLCRへのテレメトリのダウン
   リンク
- (2) LCR から本衛星へのコマンドのアップリンク

## 6.2. 通信系への要求

Sバンド通信系への要求は以下の通りである。

ダウンリンクするデータはミッションデータ とテレメトリである。そのうちミッションデータ は宇宙空間で撮影された写真のデータである。

ミッション系からの要求より、1 日に撮影され る写真 40 枚のデータを 1 日で衛星から地上に送 信する必要がある。写真 1 枚のデータ量は 22MB である。つまり 1 日に 880MB のデータを地上に 送信することとなる。

テレメトリのデータ量はミッションデータの 量に比べとても小さいので考慮にいれない事と する。よって1日に地上に送信するデータの量は 880MBである。

Aバンド通信系への要求は、市販のアマチュア 無線用機器を地上局に用いることができるよう に、衛星側の送受信機の性能を保証することであ る。

## 6.3. Sバンド通信系の設計

## 6.3.1. 地上局の検討

通信は本衛星と地上局の1対1直接通信で行う。 本衛星のダウンリンクするデータ量は1日あた り880MBと大きい。そのため通信時間をできる だけ稼がなくてはならない。本衛星の軌道は太陽 同期準回帰軌道なので、高緯度にある地上局ほど 通信時間を長く確保することができる。以上の点 をふまえてダウンリンクには国内の増田1局と、 高緯度に位置するキルナ局を合わせて使用する。 アップリンクは、適宜、キルナ局か増田1局よ

本衛星が通信で使用する地上局の位置を以下に示す。

1)キルナ局

北緯 67 度 52 分 59 秒 東経 21 度 3 分 38 秒 2) 増田 1 局

北緯 30 度 33 分 7 秒 東経 131 度 1 分 2 秒

## 6.3.2. 通信可能時間の検討

本衛星の軌道は太陽同期準回帰軌道(高度 712[km]軌道傾斜角 98.4[deg])で回帰日数が8日 である。さらに、キルナ局、増田1局の通信可能 な仰角をともに5~90[deg]とし、軌道計算を行う。 キルナ局、増田1局での8日間の通信可能時間

の計算結果を表 6-1 に示す。

表 6-1 8日間の通信時間

| キルナ局[sec] | 44520 |
|-----------|-------|
| 増田1局[sec] | 16570 |
| 合計[sec]   | 61090 |

補足: 増田1局と本衛星間の1パスの通信にお ける通信可能時間は連続360秒が最短である。

## 6.3.3. ダウンリンクの伝送レート

軌道は太陽同期準回帰軌道で回帰日数は8日で あるため、Sバンド通信系は8日間を1サイクル として解析する。

§ 2-6.2 節より、Sバンド通信系における1サイ クルで、ダウンリンクするミッションデータ量は、 880×8=7040[MB]である。

本衛星Sバンド局の通信可能時間は表 6-1より 約 61090 秒であるので、伝送レートは最低 920kbps、余裕をみて 950kbpsとする。この伝送 レートで1日平均 40 枚の写真のデータを送信す ることができる。

またこのとき、1 パスで 2~3 枚の写真データを 送信することができる。

## 6.3.4. アップリンクの伝送レート

伝送レートを 200bps とする。

1 パスで送信できる最低のデータ量は前述 (§2-6.3.2 参照)の1パスの最短通信可能時間より、 200×360.0 = 72000[bit] = 9[KB]である。この時、 アップリンクできるデータ量は十分である。

## 6.3.5. 通信方式検討

本衛星で用いる搬送周波数帯は宇宙運用で使われる S バンドを使用し、ダウンリン ク:2220MHz、アップリンク:2045MHz とする。

ダウンリンクにおいてテレメトリのデータ量 はミッションデータの量と比べて小さいため、ミ ッションデータとテレメトリをまとめて同じ回 線で伝送する。これらのデータの量は大きいので、 変調方式には伝送効率、周波数利用率の高い QPSKを採用する。

アップリンクにおいては送信データ量が小さ いが、確実なデータ送信が要求されるため、干渉 に強い残留搬送波方式の1つである位相変調方式 (PM)を採用する。

以上の結果より、確保する2つの本衛星-地上 局間における通信回線を表6-2にまとめる。

| 衣 6-2 進信回線(5 ハン |
|-----------------|
|-----------------|

|             | Down link       | Up link         |
|-------------|-----------------|-----------------|
| 周波数[MHz]    | 2220            | 2045            |
| 伝送レート[kbps] | 950             | 0.2             |
| 通信距離[km]    | $712 \sim 2563$ | $712 \sim 2563$ |
| 変調方式        | QPSK            | PM              |

## 6.3.6. 機器構成検討

本衛星の姿勢制御は、日陰時には撮影のため、 日照時には電力確保のために行われ、通信のため に行うことは難しい。ゆえにアンテナは姿勢変更 を必要としない無指向性にする。アンテナには小 型で、構造上有利なパッチアンテナを使用する。 また冗長性をもたせるために、Sバンド送受信機 (STRX)を2つ搭載する。Sバンド送受信機の切り 替えを行うスイッチはSバンドダイプレクサ (SDIP)に内蔵する。図 6-1 に通信機器構成を示す。 通信搭載機器の一覧は付録表 10-1 を参照とする。



図 6-1 Sバンド通信機器構成

## 6.4. Sバンド通信系回線計算

表 6-3 に本衛星-地上局(キルナ局、増田1局)間 の通信についての回線計算結果を示す。

表 6-3 より回線マージンは 3[dB]以上である。さ らに、PFD制限内におさまる。よってSバンド通 信系は本衛星のミッションにおける要求を満た し、実現可能である。

表 6-3 回線計算表(Sバンド)

|     | 項目               | 単位             | Down link | Up link |
|-----|------------------|----------------|-----------|---------|
|     | アンテナ間距離          | km             | 2563      | 2563    |
|     | 搬送周波数            | MHz            | 2220      | 2045    |
|     | 波長               | m              | 0.14      | 0.15    |
|     | 仰角               | deg            | 5         | 5       |
|     | 送信EIRP           | dBW            | -1.6      | 64.0    |
| 送   | 送信機出力            | dB             | -1.5      | -       |
| 信   | 給電損失             | dB             | 3.0       | -       |
| 側   | 送信アンテナ利得         | dBi            | 3.0       | -       |
|     | ポインティング損失        | dB             | 0.1       | -       |
| Ŕ   | 電力分配損失           | dB             | 0.0       | 0.0     |
| 进行  | 自由空間損失           | dB             | 167.5     | 166.8   |
| 后   | 偏波損失             | dB             | 0.0       | 0.0     |
| 工問  | 大気吸収損失           | dB             | 0.4       | 0.4     |
| 161 | 降雨損失             | dB             | 0.0       | 0.0     |
|     | 受信G/T            | dB             | 21.5      | -22.9   |
|     | ポインティング損失        | dB             | 0.1       | 0.1     |
| 受   | 受信アンテナ利得         | dBi            | 45.4      | 3.0     |
| 信   | 給電損失             | dB             | 1.0       | 3.0     |
| 側   | システム雑音温度         | dBK            | 22.8      | 22.8    |
|     | 受信C/No           | dBHz           | 80.6      | 102.5   |
|     | 総合C/No           | dBHz           | 80.6      | 102.5   |
|     | 要求Eb/No          | dB             | 9.6       | 9.6     |
|     | ハードウェア劣化量        | dB             | 2.5       | 2.5     |
|     | 符号化利得            | dB             | 0.0       | 0.0     |
|     | ビットレート           | dBHz           | 59.8      | 23.0    |
|     | 変調損失             | dB             | 4.0       | 4.0     |
|     | 要求C/No           | dBHz           | 75.9      | 39.1    |
|     | 回線マージン           | dB             | 4.6       | 63.4    |
|     | PFD (仰角 5 [deg]) | $dBW/4kHz/m^2$ | -161.5    | -       |
|     | PFD (仰角90[deg])  | $dBW/4kHz/m^2$ | -214.6    | -       |

## 6.5. A バンド通信系の設計

## 6.5.1. A バンド通信系の諸元

衛星側、地上局側の通信系使用機器を表 6-4 に示す。地上局側の機器については一般に市販さ れている製品から選んだものである。

表 6-4 Aバンド通信系使用機器

| 衛星側     |                          |  |  |  |  |  |  |
|---------|--------------------------|--|--|--|--|--|--|
| アンテナ    | SOHLA-1搭載アンテナ            |  |  |  |  |  |  |
| 受信機     | 西無線製 RXE145M-101A        |  |  |  |  |  |  |
| 送信機     | 西無線製 TXE430MFM-211A      |  |  |  |  |  |  |
| 地上局側    |                          |  |  |  |  |  |  |
| 受信用アンテナ | Radix 八木アンテナ RY-430M12/V |  |  |  |  |  |  |
| 送信用アンテナ | Radix 八木アンテナ RY-144M3    |  |  |  |  |  |  |
| 送受信機    | アイコム製 IC-910D            |  |  |  |  |  |  |

6.5.2. 搭載する A バンド通信系機器

Aバンド通信系の、衛星搭載機器構成を 図 6-2 に示す。

## 6.6. A バンド通信系回線計算

Aバンド通信系は、特に地上局の位置を特定 せず、1パスの通信のみ解析する。

表 6-5 に本衛星-地上局(LCR)間の通信につい ての回線計算結果を示す。

表 6-5 より回線マージンは 3[dB]以上である。また受信電力はダウンリンクにおいて-120[dBm]、

アップリンクにおいては-117[dBm]となり、それ ぞれの受信機の感度で、受信可能である。つまり Aバンド通信系においてミッションは実現可能で ある。また、地上局側を市販のアマチュア無線機 器で実現するという要求を満たす。

|      | 項目        | 単位              | Down link | Up link |
|------|-----------|-----------------|-----------|---------|
|      | アンテナ間距離   | km              | 1252      | 1252    |
|      | 搬送周波数     | MHz             | 435       | 145     |
|      | 波長        | m               | 0.69      | 2.07    |
|      | 仰角        | deg             | 30        | 30      |
| 送信側  | 送信EIRP    | dBW             | 8.8       | 15.2    |
|      | 送信機出力     | dBW             | 4.8       | 7.0     |
|      | 給電損失      | dB              | 1.0       | 0.3     |
|      | 送信アンテナ利得  | dBi             | 5.0       | 9.0     |
|      | ポインティング損失 | dB              | 0.0       | 0.5     |
| 通信空間 | 電力分配損失    | dB              | 0.0       | 0.0     |
|      | 自由空間損失    | dB              | 147.2     | 137.6   |
|      | 偏波損失      | dB              | 3.0       | 3.0     |
|      | 大気吸収損失    | dB              | 0.4       | 0.4     |
|      | 降雨損失      | dB              | 0.0       | 0.0     |
|      | 受信G/T     | dB              | -1.5      | -16.0   |
| 受信   | ポインティング損失 | dB              | 0.5       | 0.0     |
|      | 受信アンテナ利得  | dBi             | 18.3      | 5.0     |
|      | 給電損失      | dB              | 0.3       | 1.0     |
| 側    | システム雑音温度  | dBK             | 19.0      | 20.0    |
|      | 受信C/No    | dBHz            | 85.3      | 86.8    |
|      | 総合C/No    | dBHz            | 85.3      | 86.8    |
|      | 要求Eb/No   | dB              | 9.6       | 9.6     |
|      | ハードウェア劣化量 | dB              | 2.5       | 2.5     |
|      | 符号化利得     | dB              | 0.0       | 0.0     |
|      | ビットレート    | $\mathrm{dBHz}$ | 30.8      | 30.8    |
|      | 変調損失      | dB              | 3.5       | 3.5     |
|      | 要求C/No    | $\mathrm{dBHz}$ | 46.4      | 46.4    |
|      | 回線マージン    | dB              | 38.9      | 40.4    |

表 6-5 回線計算表(Aバンド)



## 7. データ処理系

## 7.1. データ処理系の概要

本衛星の中央制御ユニット(CCU)は、1 台の統 合計算機により、テレメトリ/コマンド処理、姿勢 制御処理、電力制御処理、ミッションデータの記 録等、本衛星に関わる情報の大部分を処理する。

予期せぬ原因によって計算機の処理が停止し た場合のために、常にプロセッサの動作状況を監 視し、一定時間以上処理が停止した場合には再起 動を行う。

## 7.2. 要求

他系からの要求を以下に示す。 電源系

日照時に PPT 制御演算を行うこと。

ミッション系

- 1100 万画素、各画素 16bit の画像を1サイクル(3周)で8枚保存できること。
- ミッションデータの送信ができない状況で も撮像を続けるために、1日(5サイクル計 40枚880MB)の画像を保管できること。

## 7.3. データ処理系の機能

(1) HK テレメトリ処理/保存機能

テレメトリを収集し、定常運用1サイクル(3周) 毎に1つのファイルにまとめ、送信可能な状態に する。

#### (2) ミッションデータ処理/保存機能

ミッション機器のテレメトリおよび、ミッショ ンデータの処理/保存を行う。

ミッションデータの画像を圧縮する場合は MCUで処理されるので、CCUで画像の処理を行 うことはない。

#### (3) コマンド処理/自動化機能

地上局から送られてきたコマンドをデコード し、適切なタイミングで各機器に送信する。

本衛星が地上局の可視範囲内かどうかによら ず、ミッションを行うので、ストアードコマンド 処理が不可欠であり、コマンドに従ってスケジュ ールを組み、GPS から得た時間を基準に各機器に コマンドを送信する。

#### (4) 姿勢制御演算機能

ミッション時の姿勢制御演算および、磁気トル カによるリアクションホイールの角運動量アン ローディングに関する演算を行う。

#### (5) 電力状態監視機能

バッテリ電圧、バッテリ放電深度等を監視し、 衛星が電力的に危険であると判断された場合に は、衛星の生存に不必要な機器の電源を切る。

#### (6) PPT 制御演算機能

PCUから送られた電流値から PPT 制御に必要 な演算を行い、値を PCU に渡す。

## (7) プログラム書き換え機能

必要に応じて、外部 CF メモリに保存されてい るプログラムをオンボード FlashROM に書き込 む。

# (8) 各機器とのインターフェース機能 各機器との I/F 機能を有する。

## 7.4. 機器の選定

## 7.4.1. 計算機

計算機には、開発期間の短縮、および開発費の 削減を見込んで民生品を用いる。設計は、計算機 とインターフェース部を一体化し易いことから サイズが統一されている PC/104 規格に準じて行 う。

計算機の主要部分には、十分な計算能力が得られ、浮動小数点演算が可能である SH-4 を採用する。

計算機の RAM の容量を 32MB にする。これは、 撮影画像 1 枚を一時的に RAM 上に保存できるサ イズである。また、RAM は三重多数決冗長とす ることにより、放射線によるエラーが起きた場合 に、本衛星がクリティカルな事態に陥ることを回 避する。この機能により、例えば一時的に衛星が 制御不能の状態に陥り、太陽光がレンズに直接入 射するようなリスクを低減することができる。

さらに、ソフトウェア保存側にも放射線対策と して、搭載ソフトウェアのコピーを衛星側に保存 する。そして、撮影前の昼に自己チェックを行い、 異常があった場合はその部分を置換する機能を 持たせる。

## 7.4.2. 記録装置

本衛星では、駆動部を持ち気密が必要である HDDを避け、CF型フラッシュメモリを用いるこ とにする。

フラッシュメモリの上書きは、撮影枚数の関係 から、ミッション期間中に約 3200 回行われる。 これは一般的なフラッシュメモリの書き換え可 能回数(10~100 万回)の 1/30 以下であり、十分で ある。

フラッシュメモリにはミッションデータの他、 テレメトリおよびコマンドが保存される。このデ ータ量は非常に大きく、三重多数決は現実的でな いため行わず、データの種類に応じてソフトウェ ア的に放射線対策を行う。

データの種類別対策を以下に示す。

## (1) ミッションデータ

コンポジット処理を行うことでノイズがある 程度軽減され、また、SEUによる画像データのビ ット反転は衛星システムにクリティカルな影響 を与えないため特に放射線対策は行わない。

(2) テレメトリ

ビット反転による衛星システムへの影響は無 いものの、正確なデータが地上に送られるほうが 望ましい。

よって、データに誤り訂正符号を付加して、ソ フトウェアで監視することにより、放射線対策と する。

(3) コマンド

本衛星は原則的にストアードコマンドによっ て動作するため、コマンドの重要性は非常に高く、 場合によってはビット反転が致命的となる可能 性がある。

よって、テレメトリと同様の誤り訂正符号付加 に加えて、同一のコマンドデータをメモリ上の複 数の場所に保存し、誤り訂正と同時に同一性をチ ェックする。異なっていた場合には、他の複数の データと比較し、ソフトウェア的に多数決を実現 する。これを、放射線対策とする。

## 7.4.3. 機器の性能

データ処理系の主要な性能を以下に示す。

- (1) 搭載プロセッサ
- ・CPU : 32bit (動作周波数 240MHz) (2) メモリ
  - ・RAM : 32MB(三重多数決冗長)
- (3) 記録装置
  - FlashROM : 16MB
  - ・外部 CF メモリ:1GB

## 7.5. テレメトリ概要

テレメトリ項目数の大まかな内訳を表 7-1 に 示す。

## 表 7-1 テレメトリ項目数一覧

|              | PA<br>[byte] | AA<br>[byte] | SD | Bi(PB/AB)<br>[bit] |
|--------------|--------------|--------------|----|--------------------|
| データ処理系       | 5            | 0            | 0  | 0                  |
| 電力系          | 1            | 0            | 1  | 0                  |
| 通信系          | 0            | 0            | 2  | 3                  |
| 姿勢系          | 0            | 5            | 7  | 11                 |
| 搭載・<br>環境維持系 | 17           | 0            | 0  | 9                  |
| ミッション系       | 0            | 0            | 1  | 2                  |
|              | 23           | 5            | 11 | 25                 |

## 8. 放射線対策

宇宙空間では人工衛星は厳しい放射線環境に さらされるため、衛星に搭載する機器には放射線 対策を施す必要がある。そこで、本衛星では CCU・MCUに対して放射線対策を行う。

## 8.1. トータルドーズ対策

本衛星のミッションにおいて、トータルドーズ による影響を受ける重要な部分は CCD である。 そこで、CCD の太陽側を厚さ 20[mm]のアルミで 防御する。

本衛星は、高度 712[km]の太陽同期準回帰軌道 を採用しているので、このシールド厚でのトータ ルドーズは、常に太陽活動極大期下にあると仮定 しても約 3[Gy[Si]/year]まで軽減される。

それに加えて、望遠鏡のレンズが 10 枚あるため、CCD に対するトータルドーズはある程度軽減されると考えられる。

この線量をうけても衛星が正常に動作するか を厳密に保障するためには、実際に試験をする必 要がある。

次節 8.1.1 にトータルドーズ試験の概要を示す。

#### 8.1.1. トータルドーズ試験の概要

運用高度、軌道、シールド厚から運用期間中に 受ける線量を求め、その線量を照射する。線源に は y 線を用いる。 線量は太陽活動極大期の値を採用する。それに 加え、地上での試験の制約から線量率は宇宙の条 件より大きくなるので、回復効果の面でも条件は 厳しい値になる。

安全率の面からもこの条件で試験を行い、照射 後、劣化の影響をみてトータルドーズに対する耐 性を評価する。

試験には府大にある放射線施設を利用し、コバルト 60 を用いる。

## 8.2. シングルイベント対策

次に、シングルイベントは、発生する半導体部 品、発生機構、引き起こされる現象により SEU、 SEL、SEB、SEGR に区別される。

まず、SEU (Single Event Upset) に関して、 ビット反転によるエラーが発生する可能性があ るので、CCU のメモリ部分に三重多数決を採用 する。

次に、SEL(Single Event Latchup)に関しては、 システムが異常な電流を検知したときにリセッ トする自動シャットダウン機構を CCU、MCU に おいて採用する。MCU では、過電流検出器によ って CCD に過剰電流が流れるのを防ぐ。

また、SEB (Single Event Burn Out)、 SEGR(Single Event Gate Rupture)に関しては、 それぞれ cold standby、hot standby という対策 があるが、これらは同じ構成のシステムが2系統 必要となってくるため、設計上の制約から、対策 は行わないことにする。

シングルイベントに関しても、耐性を厳密に保 障するためには実際に試験を行う必要がある。次 節 8.2.1 にシングルイベント試験の概要を示す。

## 8.2.1. シングルイベント試験の概要 SEU

まず、SEU 試験についての概要を述べる。 異なった LET を持つ重粒子イオンを照射し、各 LET に対する反転断面積を求める。

得られた LET 反転断面積グラフより飽和反転

面積とLET<sub>th</sub>を求め、得られた飽和反転断面積よ りデバイスサイズ、LET<sub>th</sub>より臨界電荷量をそれ ぞれ求める。

数値計算でこれらの値を処理することによって、SEU発生確率を求める。

## <u>SEL</u>

次に SEL 試験について述べる。

フルエンス、照射時間、SEL 発生回数を測定し、 数値計算でこれらの値を処理することによって、 SEL の発生確率を求める。この際、システムが暴 走した場合のためのリセット回路を組み、重粒子 を当て、過剰電流が流れた際にリセットし、正常 に動作するかを確かめる。

これらの試験によってシングルイベント発生 確率を見積もることができ、SEU、SEL それぞ れに対して対策を施すことで回避できるかを判 断する。

## 9. 参考文献

- [1] 茂原正道鳥山芳夫"衛星設計入門"倍風 館,2002
- [2] 冨田信之"宇宙システム入門"倍風館,1994
- [3] 飯田尚志編著"衛星通信" Ohmsha
- [4] 日本宇宙フォーラム"衛星設計コンテスト技 術資料"2003
- [5] 天文年鑑編集委員会"天文年鑑 2006" 誠文 堂新光社
- [6] "月刊 天文ガイド" 誠文堂新光社
- [7] フィッシャー/デュルベック "ハッブル宇宙 望遠鏡" シュプリンガー・フェアラーク東 京株式会社

# 10.付録

## 表 10-1 搭載機器管理表

|                | 略称   | 個数 | 機械的I/F     |                           | 電気的I/F |                    | 熱的I/F |           |     |                                                      |
|----------------|------|----|------------|---------------------------|--------|--------------------|-------|-----------|-----|------------------------------------------------------|
| 名称             |      |    | 質量<br>[kg] | 寸法[mm]                    | 定常消費   | 最大消費               | 動作    | 動作温度範囲[℃] |     | 備考                                                   |
|                |      |    |            |                           | 電力[W]  | 電力[W]              | 電圧[V] | Min       | Max |                                                      |
| 中央制御ユニット       | CCU  | 1  | 2.5        | 150 × 200 × 130           | 5.1    | 5.5                | 5     | -15       | 55  | -                                                    |
| 電力制御ユニット       | PCU  | 1  | 1          |                           |        | 4.5                | 5     | -15       | 50  | _                                                    |
| Ni-MHバッテリ      | BAT  | 2  | 4          | 240 	imes 90 	imes 60     | -      | -                  | -     | 5         | 25  | Ni−MH(Panasoic製HHR900D)<br>24直列×1並列 容量:9Ah 電圧:29~37V |
| 太陽電池セル         | SA   |    | 0.448      | 36.3×76.2(一枚)             | -      | -                  | -     | -90       | 90  | GaAS(SHARP製) 一枚あたり2.8g 184枚                          |
| Sバンド送受信機       | STRX | 2  | 2          | 115 × 150 × 45            | -      | 4.0(送信)<br>1.3(受信) | BUS   | -15       | 50  | SOHLA-1搭載機器参考                                        |
| Sバンドダイプレクサ     | SDIP | 1  | 0.35       | 115 × 75 × 25             | _      | 1.3                | BUS   | -15       | 50  | SOHLA-1搭載機器参考                                        |
| Sバンドカプラ        | SCPL | 1  | 0.23       | 75 × 95 × 20              | -      | -                  | -     | -15       | 50  | SOHLA-1搭載機器参考                                        |
| Sバンドアンテナ       | SANT | 2  | 0.18       | 直径80×10                   | -      | -                  | -     | -35       | 50  | SOHLA-1搭載機器参考                                        |
| アマチュアバンド送受信機   | HTRX | 1  |            | 170 × 115 × 91            | -      | 9.1                | 7     | -         | -   | SOHLA-1搭載機器参考                                        |
| アマチュアバンドアンテナ   | HANT | 2  |            | 17 × 78 × 50              | -      | -                  | -     | -         | -   | SOHLA-1搭載機器                                          |
| スターセンサ         | STS  | 2  | 2.2        | 80 × 100 × 180            | -      | 5                  | 5     | -20       | 65  | VECTRONIC Aerospace製                                 |
| リアクションホイール     | RW   | 4  | 7.2        | 115 × 115 × 80            | 4      | 25                 | 5     | -20       | 70  | 定常時:RWの使用は3個<br>VECTRONIC Aerospace製                 |
| 磁気トルカ          | MTQ  | 3  | 1.5        | 200 × 70 × 35             | -      | 0.84               | 5     | -20       | 50  |                                                      |
| 府大太陽センサ        | FSS  | 1  | 0.4        | 80 × 150 × 40             | -      | 1                  | 5     | -15       | 50  | SOHLA-1搭載機器                                          |
| 磁気センサ          | FMS  | 1  | 0.05       | $40 \times 40 \times 30$  | _      | 0.5                | 5     | -20       | 50  | SOHLA-1搭載機器                                          |
| 磁気センサ処理部       | FMSE | 1  | 0.12       | $80 \times 90 \times 70$  | -      | 1                  | 5     | -20       | 50  | SOHLA-1搭載機器                                          |
| ファイバオプティカルジャイロ | FOG  | 3  | 0.45       | 直径87×45                   | -      | 2.2                | 5     |           |     | Honeywell製 GG1320 AN Digital Laser Gyro              |
| GPS受信機         | GPSR | 1  | 0.22       | $50 \times 70 \times 40$  | 1.5    | 1.8                | 5     | 55        | -20 | SOHLA-1搭載機器                                          |
| GPSアンテナ        | GPSA | 2  | 0.03       | 50 × 45 × 15              | -      | -                  | -     | 50        | -35 | SOHLA-1搭載機器                                          |
| GPSコンバイナ       | GCNV | 1  | 0.23       | $120 \times 75 \times 50$ | -      | 0.5                | 5     | 50        | -15 | SOHLA-1搭載機器                                          |
| 構体パネル(+太陽電池パネル | -    | -  | 11         | -                         | -      | -                  | -     | -         | -   | -                                                    |
| パネル展開機構        | -    | 2  | 1          | -                         | -      | 5                  | BUS   |           |     | -                                                    |
| ヒータ            | -    | -  | 2          | -                         | -      | 18                 | BUS   | -         | -   | 必要時のみ                                                |
| ヒートパイプ         | -    | 4  |            | 直径10×300                  | -      | -                  | -     | -         | -   | -                                                    |
| CW、ハーネス        | -    | -  | 4          | -                         | -      | -                  | -     | -         | -   | -                                                    |
| 望遠レンズ          | -    | 1  | 3.5        | 最大直径120×245               | -      | _                  | _     | -10       | 40  | PENTAX FA*300を改造                                     |
| 冷却CCDコンポーネント   | CCC  | 1  | 1.1        | 100 × 100 × 77            | -      | 12.5               | 12    | -50       | 70  | BITRAN製 BS-43Cを改造                                    |
| ミッション機器制御ユニット  | MCU  | 1  | 1          | $50 \times 70 \times 100$ | -      | 5                  | 12    | -10       | 40  | BITRAN製 BS-43Cを改造                                    |