第31回衛星設計コンテスト

ジュニア概要書

応募区分 ジュニアの部

1. 作品情報·応募者情報

作品名

ソーラーセイルによる静止軌道輸送システム

副題

学校名 長崎県立長崎西高等学校

2. ミッションの概要

CubeSat による地震予報を静止軌道上で行うため、国際宇宙ステーションから低高度軌道に投入された後に、静止軌道へ自力で到達できる 2U サイズの輸送衛星を提案する。高度 700km までは大気抵抗が 無視できないため電気推進エンジンで、その後は「両面」ソーラーセイルを展開して効率よく加速し、 2.44 年で静止軌道を目指す。展開前はセイルを 1U サイズに格納できるよう独自の折り方を考えた。

3.目的と意義

(a) 目的

地震発生の前駆現象として、岩石の破壊を起源とするマイクロ波 放射が示唆されており、先行研究では、高度 700km を周回する人工 衛星に搭載されたマイクロ波放射計で検出が可能であることが示さ れている^[1](高野ら 2007)。マイクロ波放射計を備えた CubeSat を静 止軌道上に配置できれば、マイクロ波の異常を即座に日本へ伝達で きる地震予報専用のセンサーとしての活用ができる。そこで、10 サ イズの CubeSat に、電気推進エンジンと畳んだソーラーセイルから なる 20 サイズの輸送衛星を取り付けた計 30 サイズの衛星(図 1)を、

図1:CubeSat(1U)と輸送衛星(2U)

高度 400km、軌道傾斜角 51.6°の国際宇宙ステーションより放出した後、大気抵抗が光圧と比べて無視 できない高度 700km までは電気推進で加速し、それ以降はソーラーセイルを展開して光子加速を行うこ とで、2.44 年で静止軌道へ到達できる輸送システムを提案する。

(b) 重要性·技術的意義等

大きなソーラーセイルを 1U サイズに小さく格納するための独自の折り方を考案し、スピン安定方式 のため急な姿勢変更ができないという問題は、「両面」ソーラーセイルの使用で解決できた。電気推進 とソーラーセイルの両方の利点を生かしながら、自力で静止軌道へ到達できる本輸送システムは、 CubeSatの静止軌道への投入ハードルを下げる技術となる。

4. アイデアの概要

本研究では、10 サイズの CubeSat に、電気推進エンジンと折り畳んだソーラーセイルからなる 20 サイズの輸送衛星を接続した、計 30 サイズの衛星を静止軌道へ移動するための手順および実現可能 性について者容する。30 サイズの衛星の機能や質量の内訳は次のように設定する。

	電気推進エンジン	ソーラーセイル	CubeSat	合計
サイズ	1U	10	10	3U
質量	2.00kg	0. 20kg	1.00kg	3. 20kg

■電気推進に必要な推進剤の質量

本研究における軌道変更は、微小推力により徐々に半径が大きくなるスパイラル軌道遷移となる。 高度を 1km 上げるホーマン遷移を目的の高度まで繰り返して総和をとる手順で ΔV を近似計算したと ころ、高度 400km から 700km への軌道変更に必要な ΔV は 0.16km/s となった。株式会社 Pale Blue の水エンジン^[2]を参考に、比推力を 1000s とすれば、初期質量が 3.20kg の場合、推進剤(水) は 0.10kg で十分である。高度 700km へ到達後、軽量化のため電気推進エンジンは切り離し、デオービットする。

■高度 700km の軌道上でソーラーセイルを展開する手順

セイルを格納しているパネルを外した後、磁気トルカのスピンによる遠心力を利用し、セイルを展 開する(図 2)。今回独自に考案した折り畳み方により、1 辺が 7m のセイルを 1U サイズの中に円柱形 に収納することができ、遠心力のみで四角形に広げることができる(図 3)。

図2:セイルを展開した状態

図3:ソーラーセイルの展開の様子

■ソーラーセイルを用いて軌道半径を大きくする手順

軌道半径の拡大は、衛星を円周方向に加速することで可能となる。地球周回軌道上では、太陽光の向きは一定であるため、セイルの位置に応じて太陽光の入射角度を調節しなければならない。 一方で、セイルは遠心力を利用して展開するスピン安定方式とするため大きな角運動量をもち、磁気トルカでの急な姿勢変更ができない。ゆっくりとした姿勢制御で、継続した光子加速を行うための解決策として、「両面」ソーラーセイルの使用を提案する。

図4のように、A点では、太陽光とセイルを45°にして円周方 向に加速を受ける。B点では減速されないように、太陽光とセイ ルを平行にする。C点ではA点と逆向きに45°にして加速を受け る。D点では最も加速を受けるように、太陽光とセイルを垂直に 保つ。再びA点に戻ってきたセイルは、途中で表裏が反転してい る。この間、磁気トルカによる急激な姿勢の反転はできないため、 ポリイミド樹脂の膜の両面にアルミを吹き付けた「両面」ソーラ ーセイルの使用を提案する。両面ソーラーセイルであれば、地球 の周囲を1周するごとにセイルが一定の角速度で180°回転する 姿勢制御を行うだけで光子加速を行うことができる。具体的に は、地球1周にわたり積分した結果、セイルの法線と太陽光のな す角度の平均値は60°であることがわかり、衛星は円周方向に加 速し続けることが明らかとなった。以上の姿勢制御で軌道半径を 大きくすることができ、高度36000kmまで移動できる。

なお、セイルの自転を半周期の間止めて、Bの姿勢のままDの 位置に来た後にセイルの自転を同じ角速度で再開すると、軌道半 径を小さくする姿勢制御になることも確認済みである。

■ソーラーセイルを用いて軌道傾斜角を変更する手順 軌道傾斜角の変更でも両面ソーラーセイルが活躍する。図 5 のように、A点では太陽光とセイルを 30°にして、軌道傾斜角を 小さくする方向に加速を受ける。降交点付近では加速を受けるよ うに、太陽光とセイルを垂直に保つ。B点では太陽光とセイルを 60°にして加速を受ける。また、図 6 のように、昇交点付近では

減速されないように、太陽光とセイルを平行にする。以上の姿勢制御で軌道傾斜角をゆっくりと 0° へ近づけることができ、静止軌道へ移動できる。なお、この場合もセイルの法線と太陽方向のなす角 度の平均値を 60°として計算できる。

■静止軌道上での位置制御

静止軌道に到着後、静止衛星は南北軌道保持のために年間40~50m/sの速度補正を行う必要があり、 これもソーラーセイルで行う。通常時は太陽光とセイルが平行になるような姿勢制御を行い、必要に 応じてセイルを傾けることで、軌道保持に必要な推力を生み出すことができる。

■輸送にかかる時間

高度 400km から 700km への移動には電気推進を使用し、必要な ΔV は 0.16km/s である。最大推力を 0.15mN、比推力を 1000s、初期質量を 3.20kg とすると、軌道変更にかかる時間は 0.02 年である。

高度 700km からはソーラーセイルを使用する。高度 36000km への移動のための ΔV は 4.44km/s、高度 36000km の軌道上で軌道傾斜角を 51.6°から 0°に変更するための ΔV は 2.68km/s であるため、必要 な ΔV は合計で 7.12km/s である。セイルの面積を 49m²、電気推進エンジンを切り離した後の衛星の 質量を 1.2kg、セイルの法線と太陽光のなす角度の平均値を 60°とし、地球周辺での光圧の値として 4.57×10⁻⁶ N/m²を用いると、軌道変更にかかる時間は 2.42 年である。

以上により、本輸送システムを用いると、国際宇宙ステーションを離れてから 2.44 年で静止軌道 へ到着できる計算となる。

5. 得られる成果

・ 高度 700km 以遠における、地震前駆現象としてのマイクロ波観測データを蓄積する。

- 静止軌道へ到達する間に得られるデータを用いて、高度ごとのマイクロ波強度マップを作成する。
 電気推進とソーラーセイルを併用した軌道変更についての技術実証を行う。
- ・ 衛星が地上局と常時通信可能という静止軌道の利点を生かし、準リアルタイムの地震予報などのミッション設定ができるようになり、新しいアイデアの創出やミッションの検討ができる。

6. 主張したい独創性または社会的な効果

- 低高度軌道への打ち上げ機会さえあれば、後は自力で静止軌道へ移動することが可能となるため、
 これまで前例がなかった CubeSat の静止軌道投入のハードルを下げる技術となる。
- ソーラーセイルを10サイズに小さく畳み、遠心力で展開できる独自の折り方を考案した。
- 両面ソーラーセイルを利用して軌道高度や軌道傾斜角を変更するための姿勢制御の手順を決定できた。また、セイルの法線と太陽方向のなす角度の平均値を 60°としてよいことも分かった。
- ・ CubeSat の活躍の場を、教育や実験だけでなく実用へと広げることができる輸送技術になる。
- 両面ソーラーセイルは、自転の位相を変えるだけで、高度上げ下げの切り替えがいつでもできる。
- ・ 高度 700km から 36000km の間に配置した複数のソーラーセイルが CubeSat を次々につかまえて、軌 道高度の上げ下げを自在に行う輸送システム、その名も「軌道エスカレーター」構想が実現できる。

7. 謝辞

本概要書を執筆するにあたり、九州大学大学院工学研究院航空宇宙工学部門宇宙システム工学講座 小川秀朗 准教授には、宇宙輸送システムに関するミッション設定についてご指導をいただきました。 また、同講座 高尾勇輝 助教には、ソーラーセイルのダイナミクスについてご指導をいただきました。

8. 参考文献

[1]	宇宙でのマイクロ波受信による地震・噴火の探知法とその実証	
	高野忠・前田崇・相馬央令子・今岡啓治・吉田真吾・服部克己. Space Utiliz Res, 23 (2007)	
[2]	株式会社 Pale Blue 推進機一覧(水推進機)(2023 年 11 月 9 日閲覧)	
	https://pale-blue.co.jp/jpn/product/	

以上

第 31 回衛星設計コンテスト アイデアに関する説明資料 ソーラーセイルによる静止軌道輸送システム

長崎県立長崎西高等学校物理部

■本校物理部で新規に考案したソーラーセイルの折り畳み方について

・展開の様子は概要書の図2にあります。

- ・CubeSat への太陽光を妨げないように、セイルの中央には穴を開けます。
- ・1 辺が 7m のソーラーセイルを、1U サイズに収めます。
- ・遠心力で展開できることを確認するために模型を作成し、最終審査会で動作確認します。

■軌道変更に必要なΔVの計算手順について

本研究で使用する電気推進やソーラーセイルのような微小 推力による軌道遷移は、徐々に半径が大きくなるスパイラル 遷移である。まず、半径r₁の円軌道→近地点距離がr₁で遠地点 距離がr₂の楕円軌道→半径r₂の円軌道、の手順の軌道遷移(ホ ーマン遷移)を考えたのち、高度を 1km 上げるホーマン遷移 に必要なΔVの総和をスパイラル遷移におけるΔVとする近似 計算を行った。

使用する記号

- ΔV 軌道変更に必要な速さの変化量
- v_0 半径 r_1 の円軌道での速さ
- v₁ 近地点距離r₁、遠地点距離r₂の楕円軌道における近地点での速さ
- *v*₂ 近地点距離*r*₁、遠地点距離*r*₂の楕円軌道における遠地点での速さ
- v_3 半径 r_2 の円軌道での速さ
- R 地球の半径 (=6400km)
- a 加速度
- F 万有引力
- M 地球の質量
- m 人工衛星の質量
- G 万有引力定数
- g 地表での重力加速度(=9.8m/s²)

円運動の加速度 : $a = \frac{v_0^2}{r_1}$ 、万有引力 : $F = G \frac{Mm}{r_1^2}$ を用いて運動 方程式「ma = F」に代入して、

 $mrac{v_0^2}{r_1} = Grac{Mm}{r_1^2}$ すなわち $v_0^2 = rac{GM}{r_1}$ である。

また、地表における万有引力と重力は一致するので: $G\frac{Mm}{R^2}$ =

mg すなわち $GM = gR^2$ が成り立つため、

$$v_0 = \sqrt{\frac{GM}{r_1}} = \sqrt{\frac{gR^2}{r_1}} \quad \cdot \quad \cdot \quad (1)$$

同様にして、円運動の加速度: $a = \frac{v_3^2}{r_2}$ 、万有引力: $F = G \frac{Mm}{r_2^2}$ より、

$$mrac{v_3^2}{r_2} = Grac{Mm}{r_2^2}$$
 $\#$ $\#$ $v_3^2 = rac{GM}{r_2}$ $\#$ $\#$ $v_3 = \sqrt{rac{GM}{r_2}} = \sqrt{rac{gR^2}{r_2}}$ \cdots 2

楕円軌道の近地点と遠地点での運動エネルギーは、それぞれ $\frac{1}{2}mv_1^2$ 、 $\frac{1}{2}mv_2^2$ である。また、万有引力による位置エネルギー は、無限遠を基準としてそれぞれ $-G\frac{Mm}{r_1}$ 、 $-G\frac{Mm}{r_2}$ である。カ 学的エネルギー保存則と、ケプラーの第2法則より、

$$\begin{cases} \frac{1}{2}mv_1^2 - G\frac{Mm}{r_1} = \frac{1}{2}mv_2^2 - G\frac{Mm}{r_2} \\ \frac{1}{2}r_1v_1 = \frac{1}{2}r_2v_2 \end{cases}$$

これらを連立方程式として解くと、

$$v_1^2 = \frac{2GMr_2}{r_1(r_1+r_2)}$$
 , $v_2^2 = \frac{2GMr_1}{r_2(r_1+r_2)}$
ここで、①、②式 $v_0 = \sqrt{\frac{GM}{r_1}}$, $v_3 = \sqrt{\frac{GM}{r_2}}$ より、
 $v_1 = \sqrt{\frac{2GMr_2}{r_1(r_1+r_2)}} = v_0\sqrt{\frac{2r_2}{r_1+r_2}}$ · · · ③
 $v_2 = \sqrt{\frac{2GMr_1}{r_2(r_1+r_2)}} = v_3\sqrt{\frac{2r_1}{r_1+r_2}}$ · · · ④
と求まる。以上の v_0 、 v_1 、 v_2 、 v_3 を用いて、速度の刻

と求まる。以上の v_0 、 v_1 、 v_2 、 v_3 を用いて、速度の変化量 ΔV は、

$$\Delta V = (v_3 - v_2) + (v_1 - v_0)$$
 ・・・⑤
で求めることができる。

高度を1km ずつ変更する近似計算により、高度400kmから 700kmへのスパイラル遷移に必要なΔVは0.16km/s、高度700km から36000kmへのスパイラル遷移に必要なΔVは4.44km/sと 求まる。

■軌道傾斜角の変更に必要なΔVの計算手順について

高度 36000km の円軌道における速さは 3.08km/s である。軌 道傾斜角を 51.6° から 0° へ変更するには、速さを変えずに ベクトルの向きだけ変えればよい。必要な速度の変化量ΔVは、

$$\Delta V = 3.08 \times 2\sin\frac{51.6^{\circ}}{2} = 2.68 \text{ km/s}$$

■セイルの法線と太陽方向のなす角度の平均値の計算方法

太陽光圧を $P[N/m^2]$ 、セイルの面積を $S[m^2]$ 、セイルの法線 と太陽方向のなす角度を φ とするとき、セイルが受ける力は $2PS\cos^2 \varphi$ である。地球から見た太陽方向と衛星方向のなす 角を θ として、セイルが受ける力のうち進行方向の成分(青色 のベクトルで図示)を積分して平均を求める。

(i)
$$0 \le \theta \le \frac{\pi}{2}$$
 のとき

$$F_1 = \int_0^{\frac{\pi}{2}} 2PS \cos^2(\frac{\pi - 2\theta}{4}) \, d\theta = \frac{\pi + 2}{2} PS$$

(ii) $\frac{\pi}{2} \le \theta \le \pi$ のとき

$$\frac{2}{2}$$
 $\frac{3}{2}$ $\frac{3}$

(iii) $\pi \le \theta \le \frac{3}{2}\pi$ のとき

 $F_{3} = \int_{\pi}^{\frac{3}{2}\pi} 2PS \cos^{2}(\frac{2\theta - \pi}{4}) \, d\theta = \frac{\pi - 2}{2} PS$

(iv) $\frac{3}{2}\pi \le \theta \le 2\pi$ のとき

 $F_4 = \int_{\frac{3}{2}\pi}^{2\pi} 2PS \cos^2(\frac{5\pi - 2\theta}{4}) \, d\theta = \frac{\pi - 2}{2} PS$

以上より、 $0 \le \theta \le 2\pi$ における、進行方向に働く力の大きさの合計*F*は、

 $F = F_1 + F_2 + F_3 + F_4 = 2\pi PS$

である。セイルの法線と太陽方向のなす角 φ は0°のときが 最も効率がよく、衛星には進行方向に2PS [N]の力が働くの で、セイルの法線と太陽方向の平均角度を $\bar{\varphi}$ とすると、 $\cos \bar{\varphi} = \frac{2\pi PS}{2\pi \cdot 2PS} = \frac{1}{2}$ すなわち $\bar{\varphi} = 60^{\circ}$ がセイルの法線と太陽方向の平均角度である。

 ■電気推進による輸送にかかる時間の計算方法 使用する記号
 ΔV 軌道遷移に必要な速度増分
 Isp 比推力
 m₀ 打ち上げ直後の衛星の質量
 m_f 推進剤使用終了後の衛星の質量
 m 推進剤の消費量
 ŵ 推進剤重量消費率

$$\Delta V = Isp \cdot g \cdot \ln rac{m_0}{m_f}$$
 すなわち $m_f = rac{m_0}{e^{rac{\Delta V}{Isp\cdot g}}}$

したがって、推進剤の消費量は $m = m_0 - rac{m_0}{rac{\Delta V}{e^{Isp\cdot g}}}$ [kg]

推進剤の消費率は比推力の定義より

$$Isp = \frac{F}{w}$$
 すなわち $\dot{w} = \frac{F}{Isp}$
したがって、輸送にかかる時間は $\frac{m}{w} = 6.8 \times 10^3 s$
= 0.021年

■ソーラーセイルによる輸送にかかる時間の計算方法 人工衛星の質量をmとして、運動方程式「ma = F」に代入し

て、
$$a = \frac{F}{m} = \frac{2PS\cos^2 60^\circ}{m}$$
となる。
 $P = 4.57 \times 10^{-6} \text{N/m}^2$ 、 $S = 49.0\text{m}^2$ 、 $m = 1.20 \text{kg}$ を代入して、
 $a = 9.33 \times 10^{-5} \text{m/s}^2$ となり、
 $a = 0.37 \times 10^{-5} \text{m/s}^2$ となり、

以上